Topics in Asset Pricing

Assignment 5: Under- and over-reaction — To be submitted in pdf format to hombert@hec.fr before the beginning of the class on March 30th.

There are three dates \(t = 0, 1, 2 \). A risky asset is traded at \(t = 0 \) and \(t = 1 \) and pays off \(V = 1 + \epsilon \) at \(t = 2 \). Investors are competitive, risk neutral and have a zero discount rate. At \(t = 1 \), investors receive a public signal \(s \) about \(\epsilon \). The unconditional distribution of \(\epsilon \) has mean zero and the distribution conditional on the signal has mean \(E[\epsilon|s] = s \). Investors do not have rational expectations: denote investors’ forecasts by \(F[.] \). Investors have unbiased forecasts at \(t = 0 \): \(F[\epsilon] = F[s] = 0 \). But they update in a non-Bayesian way at \(t = 1 \):

\[
F[\epsilon|s] = (1 - \lambda)s,
\]
where \(\lambda < 1 \) may be positive or negative.

Question 1 Which values of \(\lambda \) may be interpreted as under-reaction? over-reaction? rational expectations?

Question 2 What is the equilibrium price at \(t = 1 \)?

Question 3 What is the equilibrium price at \(t = 0 \)?

Question 4 Calculate the (rational) expectation of the asset return between \(t = 1 \) and \(t = 2 \) as a function of \(\lambda \) and \(s \).

Question 5 Calculate the (rational) expectation of the asset return between \(t = 1 \) and \(t = 2 \) as a function of \(\lambda \) and \(R_1 \).

Question 6 When does the model predicts return momentum? return reversal? Explain the intuition in a few words.

Question 7 Alice has data on \(N \) stocks whose returns are described by this simple model. The realization of \(s \) is i.i.d. across stocks. Alice runs the following linear regression in the cross-section of stock returns:

\[
R_{2,i} = a + b R_{1,i} + u_i \quad i = 1, \ldots, N.
\]

What is the expected value of the OLS estimate of \(b \)? [You will denote \(\kappa \equiv Cov(s, \frac{s}{1+(1-\lambda)s})/Var(s) \approx 1 \).]