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In Section A of this Internet Appendix, we develop a model of competition with

vertical di�erentiation that allows us to contrast the e�ect of R&D on �rm performance

through higher vertical di�erentiation vs. higher productivity.

Section B includes additional material on the theoretical framework outlined in Sec-

tion I of the paper:

• analysis of OLS and IV estimators when R&D and trade �ows are endogenous

(Section B.1);

• extension of the model to the case where T is correlated with (θ, α, β, γ) (Sec-

tion B.2);

• extension of the model to the case where µ and µ∗ are correlated (Section B.3).

Section C reports additional empirical analysis and robustness tests:

• results when import penetration is scaled with ten-year-lagged employment (Sec-

tion C.1);

• test of endogeneity of state R&D tax credit policy to economic conditions (Sec-

tion C.2);

• results when the measure of �rms' exposure to state tax credits is based on the

location of their headquarters (Section C.3);

∗Hombert, Johan and Adrien Matray, Internet Appendix to "Can Innovation Help U.S. Manufacturing
Firms Escape Import Competition from China?" Journal of Finance [DOI STRING]. Please note: Wiley-
Blackwell is not responsible for the content or functionality of any supporting information supplied by
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• results when the measure �rms' exposure to import penetration based on Compustat

Business Segment data (Section C.4);

• results when excluding California (Section C.5);

• tests of non-monotonicity of the e�ect import competition on returns to R&D (Sec-

tion C.6);

• analysis of product di�erentiation using our second proxy of di�erentiation relative

to Chinese competitors (Section C.7).
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A IO Model

There are two ways by which innovation can translate into higher product market perfor-

mance. The one traditionally considered in the innovation and growth literature is that

innovation leads to an increase in productivity, as Grossman and Helpman (1991) and

Aghion and Howitt (1992). Second, innovation may improve product market performance

through vertical di�erentiation, as analyzed by Sutton (1991).

The distinction between the two types of innovation is important because they lead

to di�erent empirical implications. In this appendix, we work out a textbook model of

competition with vertical di�erentiation showing that, while both types of innovation lead

to an unconditional increase in �rm pro�t, they have opposite e�ects conditional on the

intensity of competition. Importantly, the distinction between productivity improvement

and vertical di�erentiation has relevant empirical content. Hoberg and Phillips (2015)

develop a methodology to measure the similarity between �rms' products based on the

textual analysis of product descriptions in �rms' 10-K, which can be used to identify in-

dustries in which products are more homogeneous (and innovation is more about improv-

ing productivity) and industries in which products are more di�erentiated (and innovation

is more about increasing vertical di�erentiation).

Setup 1 There is a mass one continuum of consumers with heterogeneous valuation ξ

for quality. ξ is uniformly distributed on [0, 1]. Each consumer consumes one or zero units

of a good. A consumer with valuation ξ for quality derives utility ξq− p from purchasing

a good of quality q at price p, or u0 if he does not purchase the good. We assume that

u0 is low enough such that all consumers purchase the good in equilibrium.

There is one domestic �rm and a competitive fringe of foreign �rms. The domestic

�rm and foreign �rms have marginal cost c and c∗, respectively, and they produce goods of

quality q and q∗, respectively. We assume that the domestic �rm is initially more e�cient

than foreign �rms on both the productivity dimension and the quality dimension: c < c∗

and q > q∗. To focus on interesting cases, we also assume that the cost di�erential

between domestic and foreign �rms is not too large to ensure that the demand addressed

to both types of �rms is nonzero in equilibrium: c∗ − c < q − q∗.
1The setup follows closely the presentation in Tirole (1988, Chapter 2).
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Since foreign �rms are competitive and produce homogeneous products, they charge

a price p∗ = c∗. The domestic �rm faces the demand function:

D(p) =


1 if p ≤ c∗,

1− p−c∗
q−q∗ if p ∈ [c∗, c∗ + q − q∗],

0 if p ≥ c∗ + q − q∗.

Its pro�t π(p) = (p − c)D(p) is maximized for a price p ∈ [c∗, c∗ + q − q∗] such that the

�rst order condition π′(p) = 0 holds. It implies p = 1
2

(
(q− q∗) + (c+ c∗)

)
and equilibrium

pro�t for the domestic �rm is equal to:

Π(c, q, c∗, q∗) =

(
(q − q∗) + (c∗ − c)

)2
4
(
q − q∗

) . (A.1)

Π(c, q, c∗, q∗) is decreasing in c and increasing in q. Thus, both productivity-enhancing

innovation and vertical di�erentiation-enhancing innovation lead to higher performance

for the domestic �rm.

Increase in import competition We model an increase in import competition as

a reduction in foreign �rms' marginal cost c∗. The impact on the performance of the

domestic �rm is given by:

−∂Π

∂c∗
= −(q − q∗) + (c∗ − c)

2(q − q∗)
< 0. (A.2)

Thus, import competition weighs on the domestic �rm's pro�ts. More important to us is

whether the negative e�ect of foreign competition is stronger or weaker when the domestic

�rm has done more productivity-enhancing innovation (i.e., it has lower c) and when it

has done more vertical di�erentiation-enhancing innovation (i.e., it has higher q).

Consider �rst the case of productivity-enhancing innovation. The adverse e�ect of

import competition given by (A.2) is stronger (more negative) when c is lower. It re-

�ects the Schumpeterian e�ect by which the bene�t of higher productivity is eroded

by competition. In the language of the model presented in Section I, δ is negative for

productivity-enhancing innovation.
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In the case of vertical di�erentiation-enhancing innovation, the adverse e�ect of import

competition given by (A.2) is lower (less negative) when q is higher. It re�ects the e�ect

by which vertical di�erentiation allows �rms to escape import competition. Thus, δ is

positive for vertical di�erentiation-enhancing innovation.

These results have the following implications:

Implication A.1. An increase in competition has a less adverse e�ect on �rms with

more di�erentiated products.

We test Implication A.1 in Section IV.A of the paper.

Implication A.2. If R&D allows �rms to choose between increasing productivity or in-

creasing di�erentiation, then an increase in competition shifts the optimal choice towards

increasing di�erentiation.

We test Implication A.2 in Section IV.B of the paper. The last implication relies on

the idea that the extent to which innovation allows �rms to increase productivity or to

increase di�erentiation varies across industries.

Implication A.3. δ is higher (more positive) in industries in which innovation is di�erentiation-

enhancing relative to industries in which innovation is productivity-enhancing.

We test Implication A.3 in Section IV.C of the paper, where we proxy for the impor-

tance of vertical di�erentiation as the average distance between �rms' products in the

industry.
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B Additional Material on the Theoretical Framework

This appendix presents additional material on the theoretical framework outlined in Sec-

tion I of the paper.

B.1 OLS and IV Estimators

In this section, we study the biases arising in the OLS estimator of equation (5) because

of the endogeneity of R&D and trade �ows. To isolate each source of bias and study to

correct each of them, we proceed in two steps. In Section B.1.1, we analyze the biases

coming from endogenous R&D (abstracting from endogenous trade shocks) and show how

to correct them by instrumenting for R&D. In Section B.1.2, we analyze the bias arising

when trade �ows respond endogenously to domestic shocks and show how to correct it by

instrumenting for imports. Finally, to facilitate the economic interpretation, we compute

�rst-order Taylor approximations for small second-order moments of T , which enables us

to obtain closed-form expressions for all the estimators of δ we analyze. All the proofs

are relegated in Section B.1.3.

B.1.1 Endogenous R&D

To focus on the issue of endogenous R&D, we �rst consider the case where the econo-

metrician can observe a measure of import competition (T ) that is not correlated with

(θ, α, β, γ).2 The following proposition analyzes the OLS estimator of equation (5) in the

paper when endogenous R&D (R) is used as a regressor.

Proposition B.1. The expected estimator of δ in (5) when endogenous R&D is used as

a regressor is:

E
[
δ̂R&D−ols

]
= δ
(

1 +
Cov(γ, γ − θ)
V (γ − θ)

)
+
Cov(β, γ − θ)
V (γ − θ)

ρ. (B.1)

Proposition B.1 shows that two biases arise in the OLS estimator. To highlight

the economic intuition, we discuss here the case where θ is constant, in which case the

2The case where T is correlated with (θ, α, β, γ) is analyzed in Section B.2.
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expected OLS estimator is equal to E
[
δ̂R&D−ols] = 2δ +

Cov(β, γ)

V (γ)
ρ.3

The �rst bias is that δ is estimated with an in�ated factor of two. It arises because

of unobserved heterogeneity in γ. The intuition is the following. Firms with a high

bene�t of innovation (high γ) do more R&D and, as a result, have higher performance.

These �rms also have higher performance at any level of R&D because they have higher

returns to R&D. Thus, OLS estimates the sensitivity of performance to R&D with an

upward bias. Because the bias is driven by unobserved heterogeneity in γ, the magnitude

of the bias is proportional to the marginal e�ect of γ on performance, i.e., the bias is

proportional to R&D. Now, δ measures how the performance-R&D sensitivity depends

on import competition. If δ > 0, industries exposed to higher competition have higher

R&D and thus the estimated performance-R&D sensitivity is estimated with a larger

upward bias in these industries relative to industries less exposed to import competition.

Thus, δ is estimated with an upward bias. Conversely, if δ < 0, industries exposed to

higher competition have lower R&D and thus the estimated performance-R&D sensitivity

is estimated with a smaller upward bias in these industries. Thus, δ is estimated with a

downward bias. In both cases, the OLS estimator of δ is biased away from zero.

The second bias arises when the resilience to trade shocks (β) is correlated with the

bene�t of innovation (γ). For instance, if �rms that are better managed are more resilient

to trade shocks and also do more R&D, then there will be a spurious positive correlation

between R&D and resilience to trade shocks that does not re�ect the causal e�ect of

R&D.

The next proposition shows that these biases can be corrected by instrumenting for

R&D. Suppose we have at our disposal a variable z that shifts the cost of R&D (θ) and

is orthogonal to other exogenous variables. In our empirical analysis, z is an R&D tax

credit. Proposition B.2 analyzes the IV estimator of equation (5) when we instrument

(T,R,RT ) using (T, z, zT ).

Proposition B.2. The expected estimator of δ in (5) when R&D is instrumented by an

exogenous cost shifter is:

E
[
δ̂R&D−iv

]
= δ. (B.2)

3Similar mechanisms are at work with heterogeneous θ.
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Thus, the biases in the OLS estimator stemming from the endogeneity of the R&D

decision are eliminated when R&D is instrumented by an exogenous cost shifter.

B.1.2 Endogenous trade �ows

In the previous section, the econometrician was assumed to observe directly productivity

shocks in the foreign country. We now analyze the case where the econometrician can

only observe trade �ows from the foreign country to the domestic country and try to infer

from them the underlying productivity shocks in the foreign country.

In any theory of international trade, trade �ows depend both on productivity in the

exporting country and on productivity in the domestic country. The latter can threaten

the identi�cation of δ, because innovation shocks in the domestic country can generate a

spurious correlation between imports and the performance of innovative �rms. Intuitively,

positive innovation shocks in the domestic country raises aggregate domestic productivity

and thus lowers imports, and they also increase the productivity of innovative �rms.

More formally, the econometrician observes imports at the industry level. Imports de-

pend on the gap between foreign productivity and domestic productivity. In our simple

framework, we proxy for domestic productivity Aj in industry j as the average perfor-

mance that �rms in this industry would experience in the absence of international trade

(i.e., setting Tj = 0 in equation (3)). Thus, Aj = 1
|j|
∑

i∈j
(
αi + γiIi

)
and imports in

industry j are equal to:

Importsj = Tj − λAj, (B.3)

where λ > 0 parameterizes the sensitivity of imports to domestic productivity.

We assume that shocks to the innovation outcome do not perfectly average out at the

industry level: 1
|j|
∑

i∈j Ii 6=
1
|j|
∑

i∈j E[Ii|Ri]. This assumption captures the notion that

industries are granular, breaking the Law Of Large Numbers (LOLN) (Gabaix (2011)).

If the LOLN held, aggregate innovation at the industry level would be a deterministic

function of aggregate R&D in the industry. From an econometric perspective, it would

mean that R&D is a perfect measure of innovation at the industry level. Instead, we

assume that the LOLN does not apply, which implies that innovation can vary across

industries even for the same level of R&D. Formally, we assume there are industry-
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level innovation shocks, µj, that make �rm-level innovation correlated with industry-level

innovation conditional on R&D:4

for i ∈ j, P [Ii = 1|Ri, µj] = µjRi. (B.4)

Finally, to focus on the endogeneity of trade �ows in relation with innovation shocks, we

make the simplifying assumption that the distribution of (α, β, γ, θ) across �rms is the

same in all industries.

The following proposition calculates the estimator of δ equation (5) when R&D is

instrumented by an exogenous cost shifter (such that endogeneity of R&D is no longer a

problem) and imports are used as a proxy for foreign productivity shocks (T ).

Proposition B.3. The expected estimator of δ in (5) when R&D is instrumented by an

exogenous cost shifter and foreign productivity is measured using domestic imports is:

E
[
δ̂import−ols

]
= δ − κλV (µ), (B.5)

where κ > 0 is reported in equation (B.9).

A �rst observation from Proposition B.3 is that, when imports do not depend on

domestic productivity (λ = 0), we are back to the case where the estimator is unbiased.

However, when imports depend on domestic productivity (λ > 0), the OLS estimator is

downward biased. When domestic �rms successfully innovate (high realized µj), the re-

alized returns to R&D are large and, at the same time, imports are low because domestic

productivity is high relative to foreign productivity. This mechanism generates a spuri-

ous negative relation between realized returns to R&D and realized imports, creating a

downward bias in the estimate of δ.

The next proposition shows that this bias can be eliminated by extracting foreign

productivity shocks from foreign imports to a third country that has a similar economic

structure as the domestic country. Consider a third country (or group of third countries)

described by equations mirroring the ones for the domestic country. Namely, in the

4Since µj is interpreted as a (non-zero) average of idiosyncratic shocks that are assumed to be inde-
pendent from other exogenous variables, we assume that µj is also independent from other exogenous
variables. It then follows from P [Ii = 1|Ri] = Ri and Bayes law that E[µj ] = 1.
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third country, �rm performance is given by equation (3), �rm innovation is given by

equation (B.4) where µj is replaced by µ
∗
j representing the part of the idiosyncratic shocks

that fails to average out across �rms belonging to industry j in the third country, and

imports by the third country (Imports∗j) are given by equation (B.3) where Aj is replaced

by A∗j de�ned as before as average �rm performance in the third country's industry j that

would prevail in the absence of international trade.

Proposition B.4 analyzes the estimator of equation (5) when (Imports, R,R.Imports)

is instrumented using (Imports∗, z, z.Imports∗) and innovation shocks in the domestic

country and the third country are not correlated.5

Proposition B.4. Assume µ and µ∗ are not correlated. The expected estimator of δ in

(5) when R&D is instrumented by an exogenous cost shifter and domestic imports are

instrumented by the third country's imports is:

E
[
δ̂import−iv

]
= δ. (B.6)

Proposition B.4 shows that the downward bias stemming from the endogeneity of

trade �ows to innovation shocks in the destination country is eliminated when we use

imports to a third country to estimate the returns to innovation in the domestic country.

Since the bias was always downwards in Proposition B.3, it implies that using imports

by the third country as a regressor leads to a higher (and unbiased) estimate of δ than

when using imports by the domestic country.

B.1.3 Proofs

Notations In all the proofs, for any random variables x and y, we denote x̄ ≡ E[x],

σ2
x ≡ V ar(x), and σxy ≡ Cov(x, y). x = o(ε) means that x/ε goes to zero when ε goes to

zero (i.e., x is of an order of magnitude smaller than ε). y = O(ε) to mean that y/ε is

bounded above when ε goes to zero (i.e., y is at most of the same order of magnitude as

ε).

5The case where µ and µ∗ are correlated is analyzed in Section B.3.
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Proof of Proposition B.1 The OLS estimator of (β, γ, δ)′ in equation (5) is equal to

Cov(X′,X)−1Cov(X′, π), where X ≡ (R, T,RT )′, R is given by (4), and π is given by (3).

The random variables in X and π are ζ ≡ (α, β, γ, θ, T ) and I. It follows from the law of

total covariance that Cov
(
X′, π

)
= Cov

(
E[X′|ζ], E[π|ζ]

)
+ E

[
Cov(X′, π|ζ)

]
. Since X|ζ

is a constant, the second term is equal to zero and, in the �rst term, X′|ζ = X′. Thus,

denoting the expected performance conditional on ζ by Y ≡ E[π|ζ], the OLS estimator

is equal to Cov(X′,X)−1Cov(X′, Y ).

In order to obtain closed-form expressions for the estimators, we consider small second-

order moments of T . First, we can normalize T̄ = 0 without a�ecting the value of δ.

Then, we assume that σ2
T is small and that E[T 3] = o(σ2

T ), E[T 4] = o(σ2
T ), and for

x ∈ {α, β, γ, θ}, x = x̄ + σxT
σ2
T
T + εx where σxT = O(σ2

T ) and εx is independent from

T . A useful formula implied by these assumptions is that, for (x, y, z) ∈ {α, β, γ, θ, T}3,

Cov(xy, zT ) =
(
x̄z̄ + σxz

)
σyT +

(
ȳz̄ + σyz

)
σxT + o(σ2

T ).6

Using

R =
1

ρ

(
γ + δT − (1 + θ)

)
Y = α + βT +

1

ρ

(
γ + δT − (1 + θ)

)(
γ + δT

)
,

6Proof: Cov(xy, zT ) = E[xyzT ]−E[xy]E[zT ] = E
[
(x̄+ εx)(ȳ+ εy)σzT

σ2
T
T 2 + (x̄+ εx)(z̄+ εz)

σyT

σ2
T
T 2 +

(ȳ + εy)(z̄ + εz)
σxT

σ2
T
T 2
]

+ o(σ2
T )− E[xy]σxT =

(
x̄z̄ + σxz

)
σyT +

(
ȳz̄ + σyz

)
σxT + o(σ2

T ).
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we calculate:

V (R) =
1

ρ2

(
σ2
γ + σ2

θ − 2σγθ

)
+ o(1),

Cov(R, T ) =
1

ρ
δσ2

T ,

Cov(R,RT ) =
γ̄ − 1− θ̄

ρ2
δσ2

T + o(σ2
T ),

V (T ) = σ2
T ,

Cov(T,RT ) =
γ̄ − 1− θ̄

ρ
σ2
T + o(σ2

T ),

V (RT ) =
1

ρ2

(
(γ̄ − 1− θ̄)2 + σ2

γ + σ2
θ − 2σγθ

)
σ2
T + o(σ2

T ),

Cov(Y,R) =
1

ρ

(
σαγ − σαθ

)
+

1

ρ2

(
(2γ̄ − 1− θ̄)σ2

γ + γ̄σ2
θ + (1 + θ̄ − 3γ̄)σγθ

)
+ o(1),

Cov(Y, T ) =
(
β̄ + δ

2γ̄ − 1− θ̄
ρ

)
σ2
T + o(σ2

T ),

Cov(Y,RT ) =
( β̄(γ̄ − 1− θ̄)

ρ
+

1

ρ

(
σβγ − σβθ

)
+

δ

ρ2
(
(2γ̄ − 1− θ̄)(γ̄ − 1− θ̄) + 2σ2

γ + σ2
θ − 3σγθ

))
σ2
T

+o(σ2
T ).

We calculate Cov(X′,X)Cov(X′, Y ) using Mathematica and obtain the OLS estimator

of δ:

E
[
δ̂R&D−ols

]
= δ
(

1 +
Cov(γ, γ − θ)
V (γ − θ)

)
+
Cov(β, γ − θ)
V (γ − θ)

ρ+ o(1). (B.7)

Proof of Proposition B.2 The instrument z is such that θ = θ̃ + z and z has zero

mean and is orthogonal to (α, β, γ, θ̃, T ). We denote the vector of instruments by Z ≡

(z, T, zT )′. Applying the law of total covariance as in the proof of Proposition B.1,

the IV estimator is equal to Cov(Z′,X)−1Cov(Z′, π) = Cov(Z′,X)−1Cov(Z′, Y ), where

Y ≡ E[π|ζ] denotes the expected performance conditional on ζ ≡ (α, β, γ, θ̃, z, T ).

Using

R =
1

ρ

(
γ + δT − (1 + θ̃ + z)

)
Y = α + βT +

1

ρ

(
γ + δT − (1 + θ̃ + z)

)(
γ + δT

)
,
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we calculate:

Cov(z, R) = −1

ρ
σ2
z ,

Cov(z, T ) = 0,

Cov(z,RT ) = 0,

Cov(T,R) =
δ

ρ
σ2
T + o(σ2

T ),

Cov(T, T ) = σ2
T ,

Cov(T,RT ) =
γ̄ − 1− θ̄

ρ
σ2
T + o(σ2

T ),

Cov(zT,R) = 0,

Cov(zT, T ) = 0,

Cov(zT,RT ) = −1

ρ
σ2
zσ

2
T + o(σ2

T ),

Cov(Y, z) = − γ̄
ρ
σ2
z + o(σ2

T ),

Cov(Y, T ) =
(
β̄ + δ

2γ̄ − 1− θ̄
ρ

)
σ2
T + o(σ2

T ),

Cov(Y, zT ) = −1

ρ
σ2
zδσ

2
T + o(σ2

T ).

We calculate Cov(Z′,X)−1Cov(Z′, Y ) using Mathematica and obtain the IV estimator of

δ:

E
[
δ̂R&D−iv

]
= δ + o(1). (B.8)

Proof of Proposition B.3 We denote M ≡ Imports, the vector of covariates by

X ≡ (R,M,RM)′, and the vector of instruments by Z ≡ (z,M, zM)′. Applying the

law of total covariance as in the proof of Proposition B.1, the IV estimator is equal

to Cov(Z′,X)−1Cov(Z′, π) = Cov(Z′,X)−1Cov(Z′, Y ), where Y ≡ E[π|ζ] denotes the

expected performance conditional on ζ ≡ (α, β, γ, θ̃, z, T ).

Letting Ω ≡ (γ− 1− θ)γ, equation (B.3) implies that imports in industry j are equal

65



to Mj = Tj − λ(ᾱ + µjΩ̄). Using

R =
1

ρ

(
γ + δT − (1 + θ̃ + z)

)
M = T − λ(ᾱ + µjΩ̄),

Y = α + βT + µj
1

ρ

(
γ + δT − (1 + θ̃ + z)

)(
γ + δT

)
,

we calculate:

Cov(z,R) = −1

ρ
σ2
z ,

Cov(z,M) = 0,

Cov(z,RM) =
λ(ᾱ + Ω̄)

ρ
σ2
z ,

Cov(zM,R) =
λ(ᾱ + Ω̄)

ρ
σ2
z ,

Cov(zM,M) = 0,

Cov(zM,RM) = −1

ρ

(
λ2
(
(ᾱ + Ω̄)2 + Ω̄2σ2

µ

)
+ σ2

T

)
σ2
z ,

Cov(Y, z) = − γ̄
ρ
σ2
z ,

Cov(Y, zM) = −1

ρ

(
− γ̄λ(ᾱ + Ω̄) + δσ2

T − γ̄λΩ̄σ2
µ

)
σ2
z .

We calculate Cov(Z′,M)−1Cov(Z′, Y ) and obtain:

E
[
δ̂import−ols

]
= δ − Ω(γ̄ + δΩ̄λ)

σ2
T + Ω̄2λ2σ2

µ

λσ2
µ + o(1). (B.9)

Proof of Proposition B.4 We denote M∗ ≡ Imports∗, the vector of covariates by

X ≡ (R,M,RM)′, and the vector of instruments by Z ≡ (z,M∗, zM∗)′. Equation (B.3)

implies that imports by the third country are equal to M∗ = T − λ(ᾱ+ µ∗j Ω̄). Following
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the same steps as in the proof of Proposition B.3, we calculate

Cov(z,R) = −1

ρ
σ2
z ,

Cov(z,M) = 0,

Cov(z,RM) =
λ(ᾱ + Ω̄)

ρ
σ2
z ,

Cov(zM∗, R) =
λ(ᾱ + Ω̄)

ρ
σ2
z ,

Cov(zM∗,M) = 0,

Cov(zM∗, RM) = −1

ρ

(
λ2(ᾱ + Ω̄)2 + σ2

T

)
σ2
z ,

Cov(Y, z) = − γ̄
ρ
σ2
z ,

Cov(Y, zM∗) = −1

ρ

(
− γ̄λ(ᾱ + Ω̄) + δσ2

T

)
σ2
z .

We calculate Cov(Z′,M)−1Cov(Z′, Y ) and obtain:

E
[
δ̂import−iv

]
= δ + o(1). (B.10)

B.2 Import Competition Shocks Correlated with Domestic Shocks

We analyze the case where productivity shocks in the foreign country (T ) are correlated

with �rms' opportunity cost of R&D (θ), baseline level of performance (α), resilience to

trade shocks (β), and unconditional return to innovation (γ). Correlation between T and

(θ, α, β, γ) raises a di�erent set of issues than the case in which the econometrician can

only observe realized trade �ows as analyzed in Section B.1.2 of this Internet Appendix.

The former generates a spurious correlation between expected performance and compe-

tition, whereas the latter generates a spurious correlation between realized performance

and competition.

The following proposition analyzes the IV estimator of equation (5) when (T,R,RT )

is instrumented using (T, z, zT ), as well as the same estimator when we include industry

�xed e�ects interacted with z as an exogenous regressor.

Proposition B.5. If T is correlated with (θ, α, β, γ), then the expected estimator of δ in

67



(5) when R&D is instrumented by an exogenous cost shifter is:

E
[
δ̂R&D−iv

]
= δ +

Cov(γ, T )

V (T )
. (B.11)

If, in addition, the data is panel and γ is an industry �xed characteristic, then the expected

estimator when industry �xed e�ects interacted with z are included is:

E
[
δ̂R&D−iv,indFE.z

]
= δ. (B.12)

The �rst part of Proposition B.5 shows that the estimator is biased when trade shocks

(T ) are correlated with the sensitivity of performance to innovation (γ). If the correlation

is, say, positive, then the estimated return to innovation will be larger in import-exposed

industries, leading to a higher estimated δ. However, it will only re�ect unobserved

heterogeneity in the exogenous returns to innovation and not the causal e�ect of import

competition.

The second part of the proposition shows that, if exogenous return to innovation

(γ) is an �xed industry characteristic, then this bias can be corrected by controlling for

industry �xed e�ects interacted with the instrument for R&D (z). Intuitively, industry

�xed e�ects interacted with instrumented R&D control for unobserved heterogeneity in

time-invariant industry-speci�c return to innovation (γ), and thus correct the bias arising

from potential correlation between γ and T .

To check that the results in the paper are not driven by such unobserved hetero-

geneity, we re-run our main regressions including industry �xed e�ects interacted with

instrumented R&D. Results reported in Table B.1 show that our main results are robust

to this alternative speci�cation.

Proof of Proposition B.5 It follows from the Frisch-Waugh-Lovell theorem that

adding industry �xed e�ects interacted with z as an exogenous regressor is equivalent

to projecting Y , (T,RT ), and (T, zT ) on industry �xed e�ects interacted with z and

68



computing the IV estimator using the residuals. These residuals are equal to:

Ỹ = α + βT +
1

ρ
(γ − 1− θ̃ + δT )(γ + δT )− z(γ⊥ + δT⊥),

T̃ = T,

R̃T = (γ − 1− θ̃ + δT )T − zT⊥,

z̃T = zT⊥,

where γ⊥ and T⊥ denote the deviation of γ and T , respectively, from the industry time-

series average. We calculate:

Cov(T̃ , T̃ ) = σ2
T ,

Cov(T̃ , R̃T ) =
γ̄ − 1− θ̄

ρ
σ2
T + o(σ2

T ),

Cov(z̃T , T̃ ) = 0,

Cov(z̃T , R̃T ) = −σ2
z

1

ρ
σ2
T⊥ + o(σ2

T ),

Cov(Ỹ , T̃ ) = σαT + (β̄ + δ
2γ̄ − 1− θ̄

ρ
)σ2

T +
2γ̄ − 1− θ̄

ρ
σγT −

γ̄

ρ
σθT + o(σ2

T ),

Cov(Ỹ , z̃T ) = −σ2
z

δ

ρ
σ2
T⊥ + o(σ2

T ).

We calculate the IV estimator Cov((T̃ , z̃T )′, (T̃ , R̃T ))−1Cov((T̃ , z̃T )′, Y ) using Mathe-

matica and obtain:

E
[
δ̂R&D−iv,indFE.z

]
= δ + o(1).
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Table B.1: Controlling for Industry Fixed E�ects Interacted with Instrumented R&D

Sales ROA Capital Employment
growth expenditures growth
(1) (2) (3) (4)

Import penetration × R&D stock 0.99** 1.19** 2.89*** 0.72*
(0.49) (0.60) (0.66) (0.42)

Assets 0.04*** 0.02* 0.06*** 0.08***
(0.01) (0.01) (0.02) (0.01)

Age -0.24*** 0.15*** -0.45*** -0.26***
(0.02) (0.02) (0.03) (0.01)

R&D stock 0.21 -0.12 0.37 0.15
(0.42) (0.10) (0.40) (0.26)

Import penetration × Age -0.70 0.18 -1.20 -0.90**
(0.48) (0.41) (0.73) (0.46)

Firm FE Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes
Industry FE × R&D Yes Yes Yes Yes
Observations 23,321 23,959 23,748 22,576
R2 .34 .73 .41 .35

The sample is US manufacturing �rms over 1991�2007 from Compustat. We estimate the
same regression as in column (4) of Tables VI to XII and additionally include industry
�xed e�ects instrumented with the instrumented R&D capital stock. Standard errors are
bootstrapped within industry-year clusters and reported in parentheses. *, **, and ***
mean statistically di�erent from zero at 10, 5, and 1% levels of signi�cance.
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B.3 Correlated Innovation Shocks in the Third Country and in

the Domestic Country

We analyze the IV estimator of Proposition B.4 (imports in the domestic country in-

strumented using imports in the third party) in the case where innovation shocks in the

domestic country and the third country are correlated: Cor(µ, µ∗) 6= 0.

Proposition B.6. Assume µ and µ∗ are correlated. The expected estimator of δ in

(5) when R&D is instrumented by an exogenous cost shifter and domestic imports are

instrumented by the third country's imports is:

E
[
δ̂import−iv

]
= δ − κ

(
Cor(µ, µ∗)

)
λV (µ), (B.13)

where κ(.) is increasing in Cor(µ, µ∗), κ(0) = 0, and κ(1) = κ.

Proposition B.6 shows that the IV still corrects part of the bias in the OLS estimate

as long as innovation shocks in the domestic country and in the third country are not

perfectly correlated. The bias is completely eliminated when Cor(µ, µ∗) = 0, as already

shown in Proposition B.4 in the paper. When the correlation is positive but strictly less

than one, the IV still has a downward bias but smaller than the OLS estimate.

We can test the prediction that the point estimates for δ should be larger when we

instrument import penetration in the US using import penetration in other high-income

countries than when we do not instrument. To do that, we re-run the main regressions

in the paper without instrumenting for import penetration. Table B.2 shows side by

side the OLS estimates and the IV estimates for the main outcome variables analyzed

in the paper: sales growth, ROA, capital expenditures, and employment growth. The

IV estimates are the same as in the paper. The OLS estimates are obtained by running

the same regressions and replacing instrumented import penetration by actual China's

import penetration in the US on the right-hand side (both for non-interacted import

penetration and for import penetration interacted with R&D). For all four dependent

variables, the OLS estimates have the same sign as the IV estimate. Consistent with the

prediction of the model, the OLS estimates are smaller than IV estimates.
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Proof of Proposition B.6 We follow the same steps as in the proof of Proposition B.4

in the case Corr(µ, µ∗) 6= 0. In this case, we calculate

Cov(z,R) = −1

ρ
σ2
z ,

Cov(z,M) = 0,

Cov(z, RM) =
λ(ᾱ + Ω̄)

ρ
σ2
z ,

Cov(zM∗, R) =
λ(ᾱ + Ω̄)

ρ
σ2
z ,

Cov(zM∗,M) = 0,

Cov(zM∗, RM) = −1

ρ

(
λ2
(
(ᾱ + Ω̄)2 + Ω̄2Cor(µ, µ∗)σ2

µ

)
+ σ2

T

)
σ2
z ,

Cov(Y, z) = − γ̄
ρ
σ2
z ,

Cov(Y, zM∗) = −1

ρ

(
− γ̄λ(ᾱ + Ω̄) + δσ2

T − γ̄λΩ̄Cor(µ, µ∗)σ2
µ

)
σ2
z .

We calculate Cov(Z′,M)−1Cov(Z′, Y ) and obtain:

E
[
δ̂import−iv

]
= δ − Ω(γ̄ + δΩ̄λ)

σ2
T + Ω̄2λ2Cor(µ, µ∗)σ2

µ

λCor(µ, µ∗)σ2
µ + o(1). (B.14)
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Table B.2: Without Instrumenting for Import Penetration

Sales growth ROA Capital Employment
expenditures growth

OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

Import penetration × R&D stock 0.89** 1.10*** 1.29** 1.42*** 1.34** 1.77*** 0.75** 0.91**
(0.36) (0.40) (0.50) (0.54) (0.64) (0.68) (0.35) (0.38)

Assets 0.03*** 0.03*** 0.01 0.01 0.05*** 0.05*** 0.07*** 0.07***
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

Age -0.23*** -0.23*** 0.15*** 0.15*** -0.44*** -0.44*** -0.25*** -0.25***
(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.02) (0.02)

R&D stock 0.07*** 0.07*** -0.21*** -0.21*** 0.03 0.02 0.14*** 0.13***
(0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.02) (0.02)

Import penetration × Age -0.50 -0.67 -0.27 -0.22 -0.02 -0.34 -0.53 -0.82*
(0.42) (0.46) (0.28) (0.35) (0.73) (0.82) (0.43) (0.48)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 23,907 23,907 24,533 24,533 24,321 24,321 23,197 23,197

The sample is US manufacturing �rms over 1991�2007 from Compustat. Odd-numbered
columns reproduce columns (4) of Tables VI to XII where we instrument import pene-
tration in the US using import penetration in a group of eight other high-income coun-
tries (Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and Switzer-
land). In even-numbered columns, we estimate the same regressions using directly (non-
instrumented) import penetration in the US as a regressor. Standard errors are boot-
strapped within industry-year clusters and reported in parentheses. *, **, and *** mean
statistically di�erent from zero at 10, 5, and 1% levels of signi�cance.
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C Additional Empirical Analysis and Robustness Tests

C.1 Import Penetration Scaled by Ten-Year Lagged Employment

In the paper, we scale import penetration using employment at the beginning of the

sample period (in 1990). In this appendix, we show that our main results are robust to

scaling import penetration using employment ten years before the beginning of the sample

period (in 1980). Table C.1 reports the regression results of our preferred speci�cation

with industry-year �xed e�ects for the four main dependent variables used in the paper:

sales growth, returns on asset, capital expenditures, and employment growth.

Table C.1: Import Penetration Scaled by Employment in 1980

Sales ROA Capital Employment
growth expenditures growth
(1) (2) (3) (4)

Import penetration/(Employment in 1980 ) 1.14*** 1.57*** 2.03*** 0.93**
× R&D stock (0.39) (0.53) (0.62) (0.38)

Assets 0.03*** 0.01 0.05*** 0.07***
(0.01) (0.01) (0.02) (0.01)

Age -0.23*** 0.15*** -0.43*** -0.24***
(0.02) (0.02) (0.03) (0.01)

R&D stock 0.07*** -0.21*** 0.02 0.13***
(0.02) (0.03) (0.04) (0.02)

Firm FE Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes
Observations 23,333 23,967 23,756 22,591
R2 .34 .71 .39 .31

The sample is US manufacturing �rms over 1991�2007 from Compustat. We estimate the
same regression as in column (4) of Tables VI to XII by scaling import penetration by
industry employment in 1980 (instead of 1990 in the rest of the paper). Standard errors
are bootstrapped within industry-year clusters and reported in parentheses. *, **, and
*** mean statistically di�erent from zero at 10, 5, and 1% levels of signi�cance.
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C.2 Exogeneity of R&D Policy

A potential concern is that changes to the R&D tax credit policy may be endogenous.

For example, do states o�er more generous tax credits when they anticipate an increase

in R&D expenditures? This issue is standard and have been been discussed in previous

literature. For instance, Bloom, Schankerman and Van Reenen (2013) review the litera-

ture on US state R&D and corporate tax rates and conclude that �the existing literature

suggests a large degree of randomness regarding the introduction and level of R&D tax

credits� (page 1366). Papers that have tried to explain the evolution of state-level corpo-

rate tax credits have found that aggregate variables (such as the federal credit rate) have

some explanatory power, but local economic or political variables do not seem impor-

tant (e.g., Chirinko and Wilson (2008, 2011)). To investigate further that issue, we ask

whether changes in R&D or economic activity predict changes in the tax-induced user

cost of R&D capital that we use as our instrument.

We use three explanatory variables to predict changes in the R&D tax cedit. The

�rst one is the change in state GDP measured over various horizons: from year t− 1 to

year t, from year t− 3 to year t, and from year t− 5 to year t. The second variable is the

change in state-level R&D. To construct this variable, we compute, for each state-year, the

weighted average ratio of R&D expenditures to total assets across all �rms with inventors

in the state, where �rms are weighted by the share of their inventors located in the state

(using the same weights wist used in Section II.B to compute the weighted average user

cost of R&D). Again, we consider changes in state R&D activity over the past 1, 3, and

5 years. The third variable is the change in the number of doctorates awarded in the

state over the past 1, 3, or 5 years, which we obtain from the NSF WebCaspar database.

We ask whether these variables predict the one-year ahead change in R&D tax credit

(ρs,t+1 − ρs,t). Results in Table C.2 show that, at all horizons, past changes in GDP,

R&D, or number of doctorates do not predict changes in the R&D tax credit policy.
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Table C.2: Exogeneity of R&D Tax Credit Policy

Change in state R&D tax credit (t→ t+ 1)

(1) (2) (3)

h = 1 h = 3 h = 5

Change in GDP (t− h→ t) -.0022 .0013 .0053
(.0068) (.0052) (.0057)

Change in R&D (t− h→ t) .0016 -.00068 -.0033
(.0057) (.0022) (.0031)

Change in number -.0023 .0012 .0011
of doctorates (t− h→ t) (.0029) (.0028) (.0025)

State FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 1,224 1,224 1,224
R2 .92 .92 .92

The sample is a balanced panel over 51 US states and the years 1982 to 2007. We estimate
a linear regression model where the dependent variable is the one-year ahead change in
the tax-induced user cost of R&D. All regressions include state and year �xed e�ects.
The regressors are the change in state GDP, the change in state R&D, and the change
in the number of doctorates awarded in the state. The changes in the regressors are
measured over the past year in column (1), over the past three years in column (2), and
over the past �ve years in column (5). Standard errors are clustered by state and year
and reported in parenthesis. *, **, and *** mean statistically di�erent from zero at 10,
5, and 1% levels of signi�cance.
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C.3 R&D Tax Incentives in Firms' Headquarter States

In the paper, we compute �rm-level exposure to state tax credit based on the locations on

their inventors. In this appendix, we show the robustness of our main results to measure

�rms' exposure to the tax credit based on the location of their headquarters. Results are

reported in Table C.3.

Table C.3: R&D Tax Incentives in Firms' Headquarter States

Sales ROA Capital Employment
growth expenditures growth
(1) (2) (3) (4)

Import Penetration × R&D stock 1.19** 1.59** 2.30*** 1.09**
(0.48) (0.66) (0.82) (0.46)

Import Penetration -1.81 -2.62*** -1.06 -0.53
(1.19) (0.64) (1.15) (0.81)

Assets 0.03*** 0.01 0.06*** 0.06***
(0.01) (0.01) (0.02) (0.01)

Age -0.22*** 0.14*** -0.44*** -0.23***
(0.01) (0.02) (0.03) (0.01)

R&D stock 0.08*** -0.26*** 0.05 0.15***
(0.03) (0.03) (0.04) (0.02)

Firm FE Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes
Observations 23,321 23,959 23,748 22,576
R2 .32 .75 .34 .39

The sample is US manufacturing �rms over 1991�2007 from Compustat. We estimate
the same regression as in column (4) of Tables VI to XII by measuring �rms' exposure
to the tax credit based on the location of their headquarters. Standard errors are boot-
strapped within industry-year clusters and reported in parentheses. *, **, and *** mean
statistically di�erent from zero at 10, 5, and 1% levels of signi�cance.
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C.4 Multi-Segment Firms

We use in the paper the historical main four-digit SIC industry to measure �rms' exposure

to import competition from China. This measure is noisy in the case of multi-segment

�rms since these �rms can have operations in industries that are di�erently exposed to

trade shocks. To re�ne our measure of exposure to Chinese import penetration, we

use Compustat Business Segments data. These data provide disaggregated �nancial

information for business segments that represent at least 10% of the �rm's sales, assets,

or pro�ts.7 55% of �rms in our sample report more than one business segment. We

compute for each �rm i in each year t the fraction of sales in each segment j de�ned at

the four-digit SIC code level: fitj. We then construct import penetration at the �rm-

year level as the average of predicted Chinese import penetration in the US across all

segments weighted by the share of each segment:
∑

j fitjImportPenetrationjt. Some

multi-segment �rms whose main SIC is in the manufacturing sector have operations in

segments outside the manufacturing sector. Since the data for Chinese import penetration

only cover manufacturing industries, part of these multi-segment �rms' sales cannot be

matched with the import penetration measure. We assume that segments outside the

manufacturing sector are not exposed to import competition from China and assign a

value of zero to import penetration for non-manufacturing industries. However, when

a �rm has more than 25% of its sales that cannot be matched with industry import

penetration, we drop the observation, which excludes 10% of observations.

We re-run the second stage regression (6) of the paper using predicted import penetra-

tion based on segment sales. We adopt again our preferred speci�cation with the full set

of �xed e�ects and controls and use the same dependent variables as in the main analysis.

Results are reported in Table C.4 and can be compared to columns (4) in Tables VI to XII

in the paper. The estimated e�ects are qualitatively similar when using the main indus-

try and when using segment-based weighted industries to construct the predicted value

of import penetration. Depending on the dependent variable, coe�cient estimates using

the main SIC code range from one-�fth to one-third smaller than when using business

7These data are not without �aws. Villalonga (2004) documents that �rms sometimes change the
segments they report when there is no real change in their operations. This should not, however, a�ect
the sign of the estimated e�ects to the extent that it only adds noise in the import penetration variable.
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segments. This di�erence can re�ect the fact that segment-based weighted industries are

a more accurate proxy of a �rm's true industry composition than the �rm's main indus-

try. The bias towards zero induced by noisy explanatory variables may thus be reduced

in this case. In conclusion, our results are robust to, and even slightly strengthened by

the use of business segment data to identify the industries of multi-segment �rms.
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Table C.4: Measuring Import Penetration From Business Segments

Sales ROA Capital Employment
growth expenditures growth

(1) (2) (3) (4)

Import penetration × R&D Stock 1.51*** 1.73** 2.56*** 1.18**
(0.56) (0.72) (0.82) (0.47)

Assets 0.03*** 0.01 0.05*** 0.07***
(0.01) (0.01) (0.02) (0.01)

Age -0.22*** 0.16*** -0.43*** -0.24***
(0.02) (0.02) (0.03) (0.02)

R&D Stock 0.06** -0.23*** 0.02 0.13***
(0.03) (0.03) (0.04) (0.02)

Import penetration × Age -0.03 0.20 -0.04 -0.34
(0.51) (0.49) (0.86) (0.54)

Firm FE Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes
Observations 22,271 22,888 22,699 21,620
R2 .33 .72 .4 .35

The sample is US manufacturing �rms over 1991�2007 from Compustat. We estimate the
same regression as in column (4) of Tables VI to XII except that we now identify �rms'
industries using Compustat business segments. The segment-based predicted import
penetration variable is computed as the average predicted import penetration across
all the segments of the �rm weighted by the share of each segment. The coe�cient
on import penetration is absorbed by industry-year �xed e�ects. Standard errors are
bootstrapped within industry-year clusters and reported in parentheses. *, **, and ***
mean statistically di�erent from zero at 10, 5, and 1% levels of signi�cance.
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C.5 Excluding California

27% of �rms in our sample have more than half of their R&D activity in California. To

check that our results are not driven by California, we re-run our regressions on sales

growth, ROA, capital expenditures and employment growth after excluding these �rms.

We use our preferred speci�cation with the full set of controls and �xed e�ects, as in

columns (4) of Tables VI to XII. Results are reported in Table C.5. They are similar

to the results on the entire sample both in terms of statistical signi�cance and economic

magnitude. The point estimates are similar for the e�ect on sales and pro�tability and

somewhat larger for the e�ect on capital expenditures and employment. Standard errors

are a bit higher than when using the entire sample, which is due to the fact that the

number of observations drops by 27%.8 Overall, California does not drive our results.

8Reducing the sample size by 27% mechanically increases the standard error by 1/
√

1− 27% − 1 =
17%.
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Table C.5: Robustness: Excluding Californian Firms

Sales ROA Capital Employment
growth expenditures growth

(1) (2) (3) (4)

Import penetration × R&D stock 1.21** 1.41** 2.77*** 1.75***
(0.58) (0.62) (0.89) (0.54)

Assets 0.03*** 0.01 0.05*** 0.06***
(0.01) (0.01) (0.02) (0.01)

Age -0.20*** 0.13*** -0.38*** -0.23***
(0.02) (0.02) (0.03) (0.02)

R&D stock 0.08** -0.19*** 0.00 0.11***
(0.03) (0.03) (0.04) (0.02)

Import penetration × Age -0.48 -0.24 -0.13 -0.49
(0.55) (0.45) (0.77) (0.44)

Firm FE Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes
Observations 17,471 17,876 17,712 16,970
R2 .35 .73 .42 .37

The sample is US manufacturing �rms over 1991�2007 from Compustat, excluding �rms
that have more than 50% of their investors located in California. We estimate the same
regression as in column (4) of Tables VI to XII. Standard errors are bootstrapped within
industry-year clusters and reported in parentheses. *, **, and *** mean statistically
di�erent from zero at 10, 5, and 1% levels of signi�cance.
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C.6 Test for Non-Monotonic E�ect of Import Competition

The results in Section III show that an increase in import competition leads to an average

increase in the performance di�erential between innovative �rms and less innovative �rms.

Aghion et al. (2005) suggest that this relation may be inverse U-shaped. To test whether

the average positive relation we uncover in the data conceals a non-monotonic relation,

we estimate a speci�cation where the return from R&D is a quadratic function of import

competition. To do so, we interact the predicted R&D stock with both predicted import

penetration and its square.9 We adopt our preferred speci�cation with �rm and industry-

year �xed e�ects as well as �rm age interacted with import penetration and squared

import penetration to control for the correlation between �rm age and instrumented

R&D stock, as in columns (4) of Tables VI to XII.

In Table C.6, we estimate this quadratic speci�cation on the dependent variables

we have considered in Sections III and V: sales growth, ROA, capital expenditures, and

employment growth. The interaction between R&D and imports is positive and signi�cant

while the interaction between R&D and squared imports is negative (and signi�cant for

three out of four variables and the fourth one has a p-value of 0.14). The point estimates

imply that the returns to R&D become decreasing in import competition when import

penetration goes above 100 k$/worker, which corresponds to the 99th percentile of the

sample distribution. Thus, the relation between import competition and return to R&D

is positive almost everywhere.

9We have also done this analysis using the linear prediction of squared import penetration (instead of
taking the square of the linear prediction of import penetration), where in the �rst stage we predict both
import penetration in the US and squared import penetration in the US using import penetration in
the other 8 high-income countries and squared import penetration in the other 8 high-income countries.
Results are very similar with this alternative speci�cation.
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Table C.6: R&D Capital in Import-Competing Industries: Quadratic Speci�cation

Sales ROA Capital Employment
growth expenditures growth

(1) (2) (3) (4)

Import penetration × R&D stock 2.63** 2.72** 6.82*** 3.09***
(1.07) (1.17) (1.75) (0.90)

Import penetration2 × R&D stock -13.13* -11.61 -43.76*** -18.76***
(7.75) (7.87) (12.78) (6.71)

Assets 0.03*** 0.01 0.05*** 0.07***
(0.01) (0.01) (0.02) (0.01)

Age -0.23*** 0.15*** -0.44*** -0.24***
(0.02) (0.02) (0.03) (0.02)

R&D stock 0.07** -0.22*** 0.00 0.12***
(0.03) (0.03) (0.04) (0.02)

Import penetration × Age -0.76** -0.63*** -1.13** -0.55**
(0.30) (0.24) (0.51) (0.27)

Import penetration2 × Age 1.53 1.14 5.77** 1.80
(1.45) (1.20) (2.42) (1.26)

Firm FE Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes
Observations 23,907 24,533 24,321 23,197
R2 .34 .72 .41 .36

The sample is US manufacturing �rms over 1991�2007 from Compustat. We estimate the
same regression as in column (4) of Tables VI to XII with as additional regressors squared
predicted China import penetration interacted with predicted stock of R&D capital, and
predicted China import penetration interacted with log of �rm age. Standard errors are
bootstrapped within industry-year clusters and reported in parentheses. *, **, and ***
mean statistically di�erent from zero at 10, 5, and 1% levels of signi�cance.
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C.7 Other Proxy for Di�erentiation from Chinese Competitors

In the paper, we show that �rms with a higher level of (exogenous) R&D increases

di�erentiation following import competition shocks by proxying for di�erentiation from

Chinese Competitors with di�erentiation from US competitors. In this appendix, we

present the results using another proxy designed to capture more precisely di�erentiation

from Chinese competitors. The idea is to test whether a �rm's products become more

similar to the products of other US �rms less exposed to Chinese competition when the

�rm has a higher stock of R&D. For each �rm i in each year t, we compute the weighted

average import penetration faced by the �rms to which �rm i is close in the product

market space:

ChineseProductsSimilarityit =
∑
k 6=i

wikt × ImportPenetrationkt, (C.1)

where the weight wikt on �rm k is proportional to the Hoberg and Phillips (2015) product

similarity index between �rm i and �rm k:

wikt =
ProductSimilaryikt∑
k′ 6=i ProductSimilaryik′t

, (C.2)

and ImportPenetrationkt is the instrumented measure of import penetration of �rm k.

The value of ChineseProductsSimilarityit is large when �rm i's products are similar

to the products of US �rms exposed to competition from Chinese �rms; it is low when

�rm i's products are more similar to the products of US �rms not exposed to Chinese

competition. Thus, a lower value of this variable re�ects more di�erentiation from Chinese

�rms. We estimate the same speci�cation as before using ChineseProductsSimilarity

as the dependent variable.

Results are reported in Table C.7. In column (1) the positive coe�cient on import

penetration is purely mechanical: when a �rm is more exposed to China's import pen-

etration (higher value of the RHS variable), it is closer in the product market space to

other US �rms that are also exposed to China's import penetration (higher value of the

LHS variable). The more interesting question is whether this relation is weaker for �rms

with a higher stock of R&D. In column (2) we interact import penetration with R&D and
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obtain a negative and statistically signi�cant coe�cient on the interaction term. Thus,

when competition from China increases, �rms with a higher level of R&D are able to

di�erentiate their products in a way that makes their products less similar to the prod-

ucts of US �rms in import-competing industries and more similar to the products of US

�rms less exposed to Chinese competition. When we include industry-year �xed e�ects,

the point estimate barely changes but the statistical signi�cance is weaker (p-value is

0.20, columns (3) and (4)). Overall, the results using this other proxy point in the same

direction as those reported in the paper: R&D allows �rms to escape import competition

by improving their ability to di�erente when the competitive pressure increases.
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Table C.7: Other Proxy for Di�erentiation from Chinese Competitors

Chinese products similarity

(1) (2) (3) (4)

Import penetration .3*** .33***
(.028) (.031)

Import penetration × R&D stock -.064** -.039 -.041
(.029) (.031) (.031)

Assets -.00019 -.00034 -.0002 -.0002
(.00019) (.00025) (.00021) (.00021)

Age -.000079 .000043 .00018 .00065
(.00054) (.00057) (.00052) (.00055)

R&D stock .00042 .00033 .00036
(.0006) (.00053) (.00053)

Import penetration × Age .05
(.035)

Observations 16,061 16,061 16,061 16,061
Firm FE Yes Yes Yes Yes
Year FE Yes Yes � �
Industry-Year FE No No Yes Yes

The sample is US manufacturing �rms over 1996�2011 from Compustat. We estimate a
linear regression model on a �rm-year panel where the dependent variable is de�ned in
equations (C.1)�(C.2) and is equal to the weighted average China's import penetration
of the �rm's peers where the weights are proportional to the Hoberg and Phillips (2015)
product similarity index with respect to the peers. All speci�cations include �rm �xed
e�ects, year �xed e�ects in columns (1) and (2), industry-by-year �xed e�ects in columns
(3) and (4), and log of total assets and log of �rm age as controls. ImportPenetration is
industry-year-level import penetration from China in the US instrumented using China
import penetration in eight other high-income markets. R&DStock is �rm-year-level
predicted stock of R&D capital instrumented using �rm-speci�c tax-induced user cost
of R&D capital. Standard errors are bootstrapped within industry-year clusters and
reported in parentheses. *, **, and *** mean statistically di�erent from zero at 10, 5,
and 1% levels of signi�cance.

87



References

Aghion, P., Bloom, N., Blundell, R., Gri�th, R., and Howitt, P., 2005. �Competition and

Innovation: an Inverted-U Relationship�. Quarterly Journal of Economics 120, 701-728.

Aghion, P., and P. Howitt, 1992. �A Model of Growth Through Creative Destruction.�

Econometrica 60(2), 323-354.

Bloom, N., Schankerman, M., and Van Reenen, J., 2013. �Identifying Technology Spillovers

and Product Market Rivalry�. Econometrica 81, 1347-1393.

Chirinko, R.S., and Wilson, D.J., 2008. �State Investment Tax Incentives: A Zero-Sum

Game?� Journal of Public Economic 92, 2362-2384.

Chirinko, R.S., and Wilson, D.J., 2011. �Tax Competition Among U.S. States: Racing

to the Bottom or Riding on a Seesaw�. Working Paper.

Gabaix, X, 2011, �The Granular Origins of Aggregate Fluctuations.� Econometrica 79,

733-772.

Grossman, G. and Helpman, E., 1991. �Quality Ladders in the Theory of Growth� Review

of Economic Studies 58(1), 43-61.

Hoberg, G., and G. Phillips 2015. �Text-Based Network Industries and Endogenous

Product Di�erentiation." Journal of Political Economy, Forthcoming.

Sutton, John. 1991. �Sunk Costs and Market Structure" (MIT Press: Cambridge, Mass).

Tirole, J., 1988. The theory of industrial organization. MIT press.

Villalonga, B., 2004. �Diversi�cation Discount or Premium? New Evidence from the

Business Information Tracking Series�. Journal of Finance 59, 479-506.

88


