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This document is organized as follows. In Section I, we solve the model with down-

stream cost differentials under a linear specification of the demand functions. Section I.1

completely characterizes the equilibria of our model under Assumption 2 (Proposition 5).

In Section I.2, we no longer make Assumption 2, and we solve for the sets of parameters’

values such that monopoly-like (resp., complete foreclosure) equilibria exist (Proposition 11).

We then investigate how these results are affected when downstream costs are convex, or

when integrated firms are allowed to offer two-part tariff contracts on the upstream market.

Section II solves the spatial competition model with exogenous locations (Proposition 12).

Section III extends Proposition 5 to a more general framework with M integrated firms and

N downstream firms (Proposition 10). Finally, Section IV proves that partial foreclosure

equilibria degrade consumer surplus and social welfare, as stated in footnote 17 of the paper.

Most of these proofs are analytical, however, they tend to rely on very tedious calculations.

For the sake of readability, we relegate most of these calculations in separate mathematica

files, available at http://sites.google.com/site/nicolasschutz/research.

I Linear Demands and Downstream Cost Differentials1

I.1 Proof of Proposition 5

The proof follows the same logic as the proof of Proposition 4. As mentioned at the end of

Section A.5 of the paper, we will also check that, when δ = 0, the upstream supplier never

wants to undercut discontinuously to drive firm d out of the market.

Determine all the equilibria. To begin with, we normalize all upstream and downstream

costs to c = cu = 0. Consider that integrated firm i supplies the upstream market at price ai

1All the calculations for this section can be found in Mathematica file
Linear-demands-cost-differentials.nb
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and denote its integrated rival by j. The best-response functions are uniquely defined since,

for all downstream and upstream prices and for k ∈ {1, 2, d}, we have
∂2π̃

(i)
k

∂p2k
= −2(1+ 2

3
γ) < 0.

The stability condition is satisfied, since, for all k 6= k′, we have

∣∣∣∣∂BR(i)
k

∂pk′

∣∣∣∣ = γ
6+4γ

< 1.

There is a unique downstream equilibrium, which can be computed by solving the set of

first-order conditions. The equilibrium quantity served by downstream firm d is positive

if and only if ai is below a threshold amax(γ, δ) that we compute in the Mathematica file,

and π
(i)
d (ai) is decreasing for ai ≤ amax(γ, δ); hence Assumption 1 is satisfied. The profit

of the upstream supplier π
(i)
i (ai) is strictly quasi-concave and its maximum is reached for

ai = am(γ, δ) ∈ (0, amax(γ, δ)); hence Assumption 3 is satisfied.

π
(i)
i (ai) and π

(i)
j (ai) are parabolas, they cross each other twice, in ai = 0 and in ai =

a∗(γ, δ) > 0. π
(i)
i (ai) is strictly concave and π

(i)
j (ai) is strictly convex, therefore π

(i)
i (ai) ≥

π
(i)
j (ai) if and only if ai ∈ [0, a∗(γ, δ)]. Then, we show that for all γ there exists δ(γ) such that

am(γ, δ) ≥ a∗(γ, δ) if and only if δ ≥ δ(γ). When this condition is satisfied, we have the same

equilibrium outcomes on the upstream market as in Proposition 4: the perfect competition

outcome a1 = a2 = 0, the matching-like outcome a1 = a2 = a∗(γ, δ), the monopoly-like

outcome in which a1 = am(γ, δ) and firm 2 makes no upstream offer, and the monopoly-like

outcome in which a2 = am(γ, δ) and firm 1 makes no upstream offer. Conversely, if condition

δ ≥ δ(γ) is not satisfied, then, only the perfect competition outcome is an equilibrium.

Restrictions on the range of parameters. Intuitively, if the entrant is highly inefficient

(large positive δ) then it cannot be active on the downstream market. Formally, we show

in the Mathematica file that, for all γ, there exists a threshold value δsup(γ) such that firm

d obtains strictly positive profits when ai = am(γ, δ) if and only if δ < δsup(γ). Moreover

δsup(γ) > max{0, δ(γ)} for all γ.

Similarly, if the entrant is highly efficient (large negative δ) then the integrated firms will

not be active on the downstream market. We show that, for all γ, there exists δinf (γ) such

that integrated firms make strictly positive profits when ai = 0 if and only if δ > δinf (γ).

Moreover δinf (γ) < min{0, δ(γ)} for all γ.

Therefore, the above analysis is valid in the range of parameter values {(γ, δ) : γ ≥
0, δinf (γ) < δ < δsup(γ)}.

No discontinuous undercutting. Now we check that, at the equilibrium of the down-

stream competition subgame, no firm is willing to “undercut discontinuously”, i.e., to set

a downstream price so low that it would exclude (at least) one of the competitors. To see

why we have to check this point, we define Pk(k
′) and Pk(k

′′), {k, k′, k′′} = {1, 2, d}, as the

threshold values of pk such that competitor k′ (resp. k′′) is driven out of the downstream
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market when pk decreases below Pk(k
′) (resp. Pk(k

′′)). Notice first that the profit function

π̃
(i)
k is continuous in pk since the downstream demand Dk is also continuous. However, π̃

(i)
k

is kinked at points pk = Pk(k
′) and pk = Pk(k

′′). Because of these kinks, π̃
(i)
k (pk) may not be

strictly concave, even though it is a piecewise quadratic polynomial function.

In fact we can see that firms j and d never want to undercut discontinuously, and that

the upstream supplier i never wants to undercut discontinuously the integrated rival j. The

intuition is that when a firm lowers its downstream price to the point where it eliminates a

downstream competitor, its demand function becomes less elastic to its own price. Formally,

for two different firms k and k′ such that (k, k′) 6= (i, d), ∂Dk/∂pk < 0 jumps upwards when

pk goes below Pk(k
′). This implies that ∂π̃

(i)
k /∂pk = Dk + pk∂Dk/∂pk also jumps upwards

when pk goes below Pk(k
′). Since π̃

(i)
k (pk) is strictly increasing in the right neighborhood of

Pk(k
′) (since Pk(k

′) < p
(i)
k (ai)), then it is even more increasing in the left neighborhood of

Pk(k
′). Therefore the profit function π̃

(i)
k (pk) is globally strictly concave.

By contrast, profit function π̃
(i)
i (pi) may not be strictly concave around the kink in pi =

Pi(d). The reason is that the profit function of the upstream supplier also includes the

upstream profit term aiDd, whose derivative jumps downwards (from a strictly positive value

to zero) when pi goes below Pi(d). Therefore the profit function ∂π̃
(i)
i /∂pi may jump upwards

or downwards at point pi = Pi(d). In fact we do not necessarily need the jump to be upward.

A sufficient condition for undercutting discontinuously to be unprofitable is that π̃
(i)
i (pi)

remains upward slopping when pi gets below Pi(d).2 In the Mathematica file, we show that

there exists a threshold value aUndercut(γ, δ) such that this condition is satisfied if and only if

ai ≤ aUndercut(γ, δ). So all we need to check is that am(γ, δ) < aUndercut(γ, δ). This condition,

in turn, is equivalent to δ being below a threshold value δUndercut(γ), which is strictly larger

than δ(γ) for all γ. Therefore, by restricting the set of parameter values (γ, δ) such that

δ < δUndercut(γ), Assumption 2 is satisfied and our analysis leading to Proposition 5 is valid.

Finally, we note that δUndercut(γ) > 0 for all γ. This ensures that discontinuous undercut-

ting is never an issue in the proof of Proposition 4 (δ = 0), as claimed at the end of Section

A.5 in the paper.

I.2 Complete vs. Partial Foreclosure

I.2.1 Proof of Proposition 11

This section comments the Mathematica file leading to Proposition 11.

We start by computing the equilibrium profits of the integrated firms, π
(∅)
i , i ∈ {1, 2},

when firm d does not obtain the input. There is a complete foreclosure equilibrium if and

2This amounts to requiring strict quasiconcavity instead of strict concavity.
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only if π
(∅)
i ≥ π

(i)
i (am). We show that, for all γ, there exists δ(γ) such that the complete

foreclosure condition is equivalent to δ ≥ δ(γ).3

Therefore there is a complete foreclosure equilibrium when δ ≥ δ(γ); there are monopoly-

like equilibria when δ(γ) ≤ δ ≤ δ(γ); the Bertrand equilibrium is the only equilibrium when

δ ≤ min{δ(γ), δ(γ)}. It remains to compare the threshold values δ(γ) and δ(γ). We find

that there exists γ such that δ(γ) ≤ δ(γ) if and only if γ ≥ γ, which concludes the proof of

Proposition 11.

I.2.2 Complete vs. Partial Foreclosure with Two-Part Tariffs

The Mathematica file also includes computations for the case in which integrated firms use

two-part tariffs on the upstream market.

We first compute atp = arg maxai π
(i)
i (ai) + π

(i)
d (ai). As explained in the paper in the

extension on two-part tariffs, when complete foreclosure is ruled out, there is always partial

foreclosure. The partial foreclosure equilibrium is monopoly-like if and only if π
(i)
i (atp) +

π
(i)
d (atp) ≤ π

(i)
j (atp); we show that there exists a threshold δtp(γ) such that this condition is

equivalent to δ ≥ δtp(γ); otherwise the partial foreclosure equilibrium is matching-like.

Once we relax Assumption 2, there is a complete foreclosure equilibrium if and only if the

duopoly profit π
(∅)
i is larger than π

(i)
i (atp) + π

(i)
d (atp). We show that there exists a threshold

δtp(γ) such that this condition is equivalent to δ ≥ δtp(γ).

It remains to compare the two thresholds. We find that δtp(γ) ≤ δtp(γ) for all γ. There-

fore, there is a complete foreclosure equilibrium when δ ≥ δtp(γ), and a symmetric partial

foreclosure equilibrium when δ ≤ δtp(γ).

I.2.3 Complete vs. Partial Foreclosure with Convex Downstream Costs

With a convex quadratic term cqD
2
k, cq > 0, added to the linear downstream cost, we solve

for the equilibrium exactly as before. The additional difficulty is that we no longer obtain

closed form expressions for the thresholds δ and δ. Instead we have to find them numerically.

The rest of the resolution works just as before. When we increase cq starting from 0, we find

that γ decreases and that the size of the partial foreclosure region expands.

3δ(γ) is above δinf (γ) and below δUndercut(γ) for all γ.
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II Proof of Proposition 124

In this section, we solve the spatial competition model with exogenous locations. A consumer

purchasing from a firm located at distance x pays transport cost tx2. We normalize t to 1, and

upstream and downstream costs to zero without loss of generality. Solving for the marginal

consumers’ locations, we get the triopoly demand functions:

D1 =
1

6
− 3

2
(p1 − p2) +

d

2
− p1 − pd

2d

D2 =
1

6
− 3

2
(p2 − p1) +

2/3− d
2

− p2 − pd
2(2/3− d)

Dd =
1

3
− pd − p1

2d
− pd − p2

2(2/3− d)

and the duopoly demand functions:

Dduo
1 =

1

2
− 9

4
(p1 − p2)

Dduo
2 =

1

2
− 9

4
(p2 − p1)

Consider that firm 1 is supplying the upstream market at price a1. There is a unique Nash

equilibrium on the downstream market, which we compute by solving for the first-order

conditions. Plugging these equilibrium prices into firms’ profit functions, we find that firm

1’s profit, π
(1)
1 (a1), is strictly concave in a1, and reaches its maximum at price a1m(d).5 We

then check that, for all 0 < d < 2/3, firm d makes positive profits when its purchases the

input from firm 1 at price a1m(d).

Using the duopoly demand functions, we solve for firms 1 and 2’s Nash equilibrium prices

when firm d is completely foreclosed. We can then compute each firm’s duopoly profit, which

we denote by Πduo.

There exists a complete foreclosure equilibrium if and only if Πduo ≥ max{π(1)
1 (a1m(d)), π

(2)
2 (a2m(d))}.

There exists a cutoff 0 < dcutoff < 2/3, such that π
(1)
1 (a1m(d)) > ΠDuo

1 if and only if 0 < d <

dcutoff , and π
(1)
1 (a1m(d)) < ΠDuo

1 if and only if dcutoff < d < 2/3. Since dcutoff ' 0.285, and by

symmetry between firms 1 and 2, this implies that there is a complete foreclosure equilibrium

if and only if d ∈ [dcutoff , 2/3 − dcutoff ]. This also implies that there is no monopoly-like

equilibrium in which firm 1 (resp., firm 2) supplies the upstream market if d > dcutoff (resp.,

if d < 2/3− dcutoff ).
4All the calculations for this section can be found in Mathematica file Proof-prop-12.nb
5Notice that, since integrated firms are asymmetrically located, their monopoly upstream prices may be

different.
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Now, we prove that, for all 0 < d < dcutoff , there exists a monopoly-like equilibrium in

which firm 1 supplies the upstream market. Assume firm 1 sells the input at price a1m(d).

Since 0 < d < dcutoff , firm 1 does not want to exit the upstream market. If firm 2 undercuts

and captures the upstream market, it cannot get more than π
(2)
2 (a2m(d)), by definition of

a2m(d). Using Mathematica, we find that π
(2)
2 (a2m(d)) < π

(1)
2 (a1m(d)) for all 0 < d < dcutoff ,

therefore, it is never profitable for firm 2 to undercut on the upstream market.

By symmetry, this also implies that for 2/3− dcutoff < d < 2/3, there is a monopoly-like

equilibrium in which firm 2 is the upstream supplier.

Discontinuous undercutting. We know from the proof of Proposition 5 that the up-

stream supplier may have incentives to undercut discontinuously on the downstream market

so as to exclude the unintegrated downstream firm. In the following, we prove the existence

of a threshold 0 < dundercut < dcutoff , such that:

• If dundercut ≤ d < dcutoff , then, for all a1 ∈ [0, a1m(δ)], firm 1 has no incentives to

undercut discontinuously. This implies that the monopoly-like equilibrium we derived

before is, indeed, an equilibrium.

• If 0 < d < dundercut, then, there exists a threshold aundercut(d) in(0, a1m(d)), such that the

upstream supplier wants to undercut discontinuously on the downstream market if and

only if aundercut(d) < a1 ≤ a1m(d). This implies that the monopoly-like equilibrium we

derived before is, in fact, not an equilibrium, because the unintegrated downstream firm

cannot be active when it purchases the input from firm 1 at price a1m(d). In this case, we

show that firm 1’s monopoly upstream price has to be redefined as aundercut(d), and that,

with this properly defined monopoly price, there exists a monopoly-like equilibrium

where firm 1 supplies the upstream market.

Assume 0 < d < dcutoff , and suppose firm 1 supplies the upstream market at price a1 ∈
[0, a1m(d)]. As in the proof of Proposition 5, we note that excluding one firm by undercutting

discontinuously makes a firm’s demand less price-sensitive. This ensures that firms 2 and

d’s profit functions are strictly concave, and therefore, that these firms have no incentives to

undercut discontinuously on the downstream market.

Now, consider firm 1. Using Mathematica, we show that there exists two cutoffs, P12 <

P1d, such that, if firms 2 and d set downstream equilibrium prices p
(1)
2 (a1) and p

(1)
d (a1), then,

firm 2 (resp., firm d) supplies a positive quantity if and only if p1 > P12 (resp., p1 > P1d).

Using the same argument as in the previous paragraph, it is clear that firm 1’s profit is
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strictly concave on interval (−∞, P1d]. Let us define the following function:

π̂(p1) : p ∈ R 7→ p1

(
1

2
− 9

4
(p1 − p(1)2 (a1))

)
.

Notice that π̂(.) is strictly concave on R, and that π̂(p1) = π̃
(1)
1 (p1, p

(1)
2 (a1), p

(1)
d (a1), a1) for all

p1 ∈ [P12, P1d]. We compute P dev
1 ≡ arg maxp1∈R π̂(p1). We show that, for all d ∈ (0, dcutoff ),

there exists a threshold aNotConcave(d) ∈ (0, a1m(d)), such that:

• If 0 ≤ a1 ≤ aNotConcave(d), then, P dev
1 ≥ P1d. By concavity, this implies that π̂(.) is

strictly increasing on interval [P12, P1d]. Since firm 1’s profit is concave on (−∞, P1d],

it follows that firm 1’s profit is increasing on this interval, and strictly quasi-concave

on the real line. In this case, undercutting discontinuously is not profitable for firm 1.

• If aNotConcave(d) < a1 ≤ a1m(d), then, P12 < P dev
1 < P1d. In this case, firm 1’s profit

function is not quasi-concave, as it has exactly two local maxima: P dev
1 and p

(1)
1 (a1).

Now, assume that aNotConcave(d) < a1 ≤ a1m(d), and let us check whether firm 1 wants to set

P dev
1 instead of p

(1)
1 (a1). Denote by Πdev

1 firm 1’s profit if it sets P dev
1 . Using Mathematica,

we prove the existence of a threshold 0 < dundercut < dcutoff , such that:

• If d ∈ [dundercut, dcutoff ), then, Πdev
1 ≤ π

(1)
1 (a1) for all a1 ∈ [0, a1m(d)]. This im-

plies, in particular, that undercutting discontinuously is not profitable for firm 1 when

a1 = a1m(d). When d ∈ [dundercut, dcutoff ), our monopoly-like equilibrium is, indeed an

equilibrium.

• If d ∈ (0, dundercut), then, there exists a threshold aundercut(d) ∈ (aNotConcave(d), a1m(d)),

such that firm 1 is better off setting P dev
1 if and only if a1 > aundercut(d).

In the latter case, when a1 = a1m(d), firm 1 wants to undercut discontinuously on the down-

stream market, and therefore, the monopoly-like equilibrium we derived before is, in fact, not

an equilibrium. However, we claim that, when d ∈ (0, dundercut), firm 1’s monopoly upstream

price is not a1m(d), but rather aundercut(d). To see this, notice that any offer strictly above

aundercut(d) is not acceptable, since firm d cannot be active with such an input price. Besides,

firm 1’s profit is strictly increasing up to a1 = aundercut(d). As a result, if firm 1 wants to

make an acceptable offer, the best thing it can do is propose a1 = aundercut(d). We therefore

redefine the ”true” monopoly upstream price as a1m(d) ≡ aundercut(d) for all d ∈ (0, dundercut).

We can then check that π
(1)
1 (aundercut(d)) > Πduo and π

(1)
2 (aundercut(d)) > π

(2)
2 (a2m(d)) for

all d ∈ (0, dundercut), and we conclude that monopoly-like equilibria also exist for these values

of parameter d.
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Input differentiation. Under input differentiation, the unintegrated downstream firm is

located at distance d from its upstream supplier. Define am(d) ≡ a
(1)
m (d) for all 0 < d ≤ 1/3.

Using Mathematica, we show that:

• Πduo ≥ π
(1)
1 (am(d)), i.e., complete foreclosure is an equilibrium, if and only if dcutoff ≤

d ≤ 1/3.

• Πduo ≤ π
(1)
1 (am(d)) ≤ π

(1)
2 (am(d)), i.e., there are monopoly-like equilibria, if and only if

0 < d ≤ dcutoff .

As before, it is profitable for the upstream supplier to undercut discontinuously on the

downstream market if and only if d < dundercut. We check that, for all 0 < d < dundercut,

Πduo ≤ π
(1)
1 (aundercut(d)) ≤ π

(1)
2 (aundercut(d)), and we conclude that monopoly-like equilibria

also exist for these values of parameter d.

III Proof of Proposition 106

This section proves the analog of Proposition 5 in a more general framework with M inte-

grated firms and N downstream firms.

Necessary and sufficient condition for monopoly-like equilibria to exist. The proof

follows the same steps as the proof of Proposition 5. As before, we can normalize cu and c

to zero without loss of generality. To begin with, we derive the demand functions by solving

the representative consumer’s program. Denote by V the set of varieties of the downstream

product. By assumption, there are |V | = M + N such varieties, where |V | denotes the

cardinality of set V . Define also Ṽ as the set of varieties that are actually purchased by the

representative consumer, i.e., loosely speaking, the varieties whose prices are not too high.

Then, it is straightforward to show that the demand for variety k ∈ Ṽ is given by:

(1) Dk =
1 + γ

γ|Ṽ |+ |V |

(
1− pk +

γ|Ṽ |
|V |

(∑
k′∈Ṽ pk′

|Ṽ |
− pk

))

Assume firm 1 is supplying all unintegrated downstream firms at price a1. We focus on

symmetric Nash equilibria on the downstream market. We are looking for triples (p1, p2, pd)

such that the upstream supplier charges p1, the integrated rivals charge p2, the unintegrated

downstream firms charge pd, and no firm wants to deviate. Taking first-order conditions, and

6All the calculations for this section can be found in Mathematica file Proof-prop-10.nb
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using the symmetric Nash equilibrium assumption, it follows that (p1, p2, pd) has to satisfy

the following three equations:

0 = 1− p1 + γ

(
p1 + (M − 1)p2 +Npd

M +N
− p1

)
− p1

(
1 + γ(1− 1

M +N
)

)
+ a1

γN

M +N

0 = 1− p2 + γ

(
p1 + (M − 1)p2 +Npd

M +N
− p2

)
− p2

(
1 + γ(1− 1

M +N
)

)
0 = 1− pd + γ

(
pd + (M − 1)p2 +Npd

M +N
− p2

)
− (pd − a1 − δ)

(
1 + γ(1− 1

M +N
)

)
We then use Mathematica to show that this system has exactly one solution, i.e., there is a

unique (symmetric) Nash equilibrium in the downstream competition subgame. We can then

plug these equilibrium prices, (p∗1, p
∗
2, p
∗
d), into the firms’ profit functions. We obtain that the

downstream firms supply a positive quantity and make positive profits if and only if a1 is

lower than a threshold aM,N
max (γ, δ). We can also compute aM,N

m (γ, δ), the monopoly upstream

price.

Denote by ΠUS(a1) the upstream supplier’s profit, and by ΠIR(a1) one of its integrated

rivals’ profit. We show that ΠUS(a1)−ΠIR(a1) is a strictly concave and quadratic polynomial

in a1. Therefore, it is strictly positive between its roots, 0 and aM,N
∗ (γ, δ).

Assume the upstream supplier, firm 1, sets its monopoly upstream price aM,N
m (γ, δ).

Clearly, by Assumptions 1 and 2, the upstream supplier does not want to deviate. For

the integrated rivals, there are two possible deviations.

First, an integrated firm may choose to match the upstream supplier’s offer. In this case,

we assume that all downstream firms continue to purchase their inputs from firm 1. This

is indeed a Nash equilibrium of the offer acceptance subgame, since, under Assumption 4,

downstream firms elect their upstream providers after downstream prices have been set, and

are therefore indifferent between two offers at the same price. Therefore, this kind of deviation

cannot destabilize our monopoly-like outcome.

Second, an integrated firm may choose to undercut the upstream supplier. This deviation

is not strictly profitable if and only if ΠUS(a1) ≤ ΠIR(a1), which is equivalent to aM,N
∗ (γ, δ) ≤

aM,N
m (γ, δ). Using Mathematica, we show that, for all γ ≥ 0, there exists a threshold δ

M,N
(γ)

such that aM,N
∗ (γ, δ) ≤ aM,N

m (γ, δ) if and only if δ ≥ δ
M,N

(γ).

Restrictions on the range of parameters. As in the proof of Proposition 5, we define

δM,N
sup (γ) as the cutoff such that downstream firms can make positive profits with input price

a1 = aM,N
m (γ, δ) if and only if δ < δM,N

sup (γ). Similarly, δM,N
inf (γ) is the threshold such that

integrated firms make positive profits when input price is a1 = 0 if and only if δ > δM,N
inf (γ).
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Using Mathematica, we compute these thresholds, and we show that δM,N
inf (γ) < δ

M,N
(γ) <

δM,N
sup (γ) for all γ ≥ 0. Therefore, the above analysis is valid in the range of parameter values

{(γ, δ,M,N) : γ ≥ 0, δinf (γ) < δ < δsup(γ), M ≥ 2, N ≥ 1}.

No discontinuous undercutting. As in the proof of Proposition 5, it is straightforward

to show that the downstream firms and the integrated firms which do not supply the upstream

market do not want to undercut discontinuously. As before, the reason is that excluding one

(or several) competitors makes a firm’s demand less price sensitive, which ensures that profit

functions for all firms except the upstream supplier are strictly concave.

By contrast, undercutting discontinuously may be profitable for the upstream supplier.

A sufficient condition for such a deviation to be unprofitable is that the upstream supplier’s

profit function be strictly quasi-concave. Define P1(d) as the (downstream) price threshold

such that, starting from the Nash equilibrium prices, all downstream firms receive zero de-

mand if the upstream supplier deviates and sets a price below P1(d). As argued in the proof

of Proposition 5, the upstream supplier’s profit is globally strictly quasi-concave if and only

if the derivative of this function with respect to p1 has a positive limit as p1 approaches P1(d)

from the left.

When p1 is smaller than P1(d), firm 1’s profit is just:

p1
1 + γ

γM +M +N

(
1− p1 +

γM

M +N

(
p1 + (M − 1)p∗2

M
− p1

))
In the Mathematica file, we compute P1(d) and differentiate the above expression with respect

to p1. We then compute the limit of this derivative as p1 goes to P1(d), and show that it is

positive if and only if a1 is smaller than some threshold aM,N
Undercut(γ, δ). Now, all we need to

check is that aM,N
m (γ, δ) is indeed below aM,N

Undercut(γ, δ). We show that this is the case, provided

that δ is smaller than some threshold δM,N
Undercut(γ). We also show that δM,N

Undercut(γ) > δ
M,N

(γ).

Therefore, by restricting ourselves to parameter values (γ, δ,M,N) such that δ < δM,N
Undercut(γ),

the analog of Assumption 3 is satisfied and our analysis leading to Proposition 10 is valid.

IV Welfare Analysis

We prove the following result:

Proposition. Assume that downstream prices are strategic complements.

• Then, consumers strictly prefer the perfect competition outcome to a partial foreclosure

equilibrium.
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• Besides, if firms’ downstream divisions are identical and downstream costs are weakly

convex, then, social welfare is strictly higher in the perfect competition outcome than

in a partial foreclosure equilibrium.

Proof. Consider a partial foreclosure equilibrium with upstream price â > cu. Assume that

downstream prices are strategic complements, and let us show that downstream prices are

higher in the partial foreclosure equilibria than in the perfect competition outcome, and that

at least one of these prices is strictly higher.

Strategic complementarity writes as ∂2π̃
(i)
k /∂pk∂p

′
k ≥ 0 for k 6= k′, hence the game de-

fined by payoff functions (pk, p−k) ∈ [0,+∞)3 7→ π̃
(i)
k (pk, p−k, a) is smooth supermodular,

parameterized by a ∈ {cu, â}. For all k, ∂π̃
(i)
k (., ., â)/∂pk ≥ ∂π̃

(i)
k (., ., cu)/∂pk, therefore,

π̃
(i)
k (pk, p−k, a) has increasing differences in (pk, a). Besides, the downstream equilibrium is,

by assumption, unique. Supermodularity theory (see Vives 1999, Theorem 2.3) tells us that

the equilibrium of this game is increasing in a. Therefore, p
(i)
k (cu) ≤ p

(i)
k (â) for all k.

Besides, by Lemma 1, p
(i)
i (â) > p

(i)
j (â) ≥ p

(i)
j (cu) = p

(i)
i (cu), therefore, p

(i)
i (â) > p

(i)
i (cu).

Therefore, consumers are worse off in the partial foreclosure equilibrium.

Assume also: a representative consumer with a quasi-linear, continuously differentiable

and quasi-concave utility function exists; firms have symmetric and identical demands; firms

have the same convex downstream costs functions. Let us show that partial foreclosure lowers

the social welfare.

When the upstream price is set at marginal cost, the three firms are perfectly identical.

Hence, since the downstream equilibrium is unique, it is symmetric, and p
(i)
k (cu) = p̂ for all

k. Let (p̂1, p̂2, p̂3) the permutation of the triple
(
p
(i)
k (â)

)
k=1,2,d

such that p̂1 ≤ p̂2 ≤ p̂3, and

let us relabel firms so that firm k is the firm that charges p̂k when the upstream price is â.

Recall that p̂k ≥ p̂ for all k, and that this inequality is strict for k = 3.

Keeping in mind that firms have been relabeled, let us denote by U(q0, q1, q2, q3) = q0 +

u(q1, q2, q3) the utility function of the representative consumer, where q0 denotes consumption

of the numeraire, and qk denotes consumption of product k ∈ {1, 2, 3}. We can then write

the social welfare as a function of the downstream price vector p:7

W (p) = u (D1(p), D2(p), D3(p))−
3∑

k=1

{cuDk(p) + c (Dk(p))} ,

where c(.) denotes the downstream cost function, which, by assumption, is the same for the

three firms. This welfare function is continuously differentiable, since functions u, c and Dk

are continuously differentiable. To prove the result, we need to show that W (p̂1, p̂2, p̂3) −
7This function does not depend on the upstream price.
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W (p̂, p̂, p̂), the variation in social welfare when downstream prices increase from (p̂, p̂, p̂) to

(p̂1, p̂2, p̂3), is strictly negative. This variation can be written as:

(W (p̂1, p̂2, p̂3)−W (p̂1, p̂2, p̂2))+(W (p̂1, p̂2, p̂2)−W (p̂1, p̂1, p̂1))+(W (p̂1, p̂1, p̂1)−W (p̂, p̂, p̂))

=

∫ p̂3

p̂2

∂W

∂p3
(p̂1, p̂2, r)dr +

∫ p̂2

p̂1

3∑
k=2

∂W

∂pk
(p̂1, r, r)dr +

∫ p̂1

p̂

3∑
k=1

∂W

∂pk
(r, r, r)dr.

We know that p̂1 < p̂2 or p̂2 < p̂3. Assume first that p̂2 < p̂3. Then, we claim that the first

integral in the right-hand side is strictly negative, while the two other ones are non-positive.

Let us start with the first one. Let r ∈ (p̂2, p̂3]. Then,

∂W

∂p3
(p̂1, p̂2, r) =

3∑
k=1

(
∂u

∂qk

∂Dk

∂p3
− (cu + c′(Dk))

∂Dk

∂p3

)
,

=
∂D3

∂p3
(r − cu − c′(D3)) +

2∑
k=1

∂Dk

∂p3
(p̂k − cu − c′(Dk)) .

Let k ∈ {1, 2}. Firm 3 has the highest markup: r − cu − c′(D3) > p̂k − cu − c′(Dk). Indeed,

since r > p̂k, D3 < Dk, and, since costs are convex, c′(D3) < c′(Dk). Besides, firm 3’s markup

is strictly positive. Indeed, since D3(p̂1, p̂2, r) <
1
3

∑3
k=1Dk(p̂1, p̂2, r) ≤ 1

3

∑3
k=1Dk(p̂, p̂, p̂) =

D3(p̂, p̂, p̂), then r− cu − c′(D3(p̂1, p̂2, r)) > p̂− cu − c′(D3(p̂, p̂, p̂)), which is strictly positive,

since π(cu) > 0. As a result,

∂W

∂p3
(p̂1, p̂2, r) < (r − cu − c′(D3))

3∑
k=1

∂Dk

∂p3
< 0.

Therefore, the first integral is indeed strictly negative, since p̂2 < p̂3. A similar argument

shows that the two other integrands are non-positive, and we can conclude that the social

welfare is strictly lower in a partial foreclosure equilibrium.

If p̂1 < p̂2, we can make the same reasoning to show that the first and third integrals are

non-positive, while the second one is strictly negative. This concludes the proof.
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