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We study how retail savings products can share market risk across investor cohorts, thereby
completing financial markets. Financial intermediaries smooth returns by varying reserves,
which are passed on between successive investor cohorts, thereby redistributing wealth
across cohorts. Using data on euro contracts sold by life insurers in France, we estimate
this redistribution to be large: 0.8% of GDP. We develop and provide evidence for a model
in which low investor sophistication, while leading to individually suboptimal decisions,
improves risk sharing by allowing intercohort risk sharing. (JEL G22, G52)
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Even in well-developed financial markets, aggregate risk can be shared only
among investors participating in the market when this risk is realized. This
limit to risk sharing sometimes results in significant losses: in 2008, a perfectly
diversified portfolio of stocks lost 40% of its value. Superior risk sharing can be
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achieved by diversifying risk intertemporally across investor cohorts (Gordon
and Varian 1988), but financial markets do not allow current and future investor
cohorts to trade with each other (i.e., financial markets are incomplete).l
In principle, long-lived financial intermediaries can complete the market by
transferring risk between successive cohorts. However, Allen and Gale (1997)
show that competition in the savings market unravels intercohort risk sharing
implemented by an intermediary under the assumption that investors always
identify and pick the best investment opportunities. This paper theoretically
and empirically shows how intercohort risk sharing can be achieved when one
relaxes that assumption.

Our first contribution is to show how one of the most popular savings products
in Europe shares market risk across investor cohorts. These products are sold by
life insurers to retail investors. Their name varies by country: “euro contracts,”
“participating contracts,” and so on. In Europe, as of 2017, these products
represent 15% of households’ financial wealth, and 60% of life insurers’
provisions (statistics from EIOPA and Eurostat). We focus on the 1.4-trillion-
euro French market, where they are called euro contracts and are pure savings
products (i.e., they are not traditional life insurance products). Euro contracts
work as follows. When a retail investor buys a contract, an account is created,
on which she can invest and withdraw cash at any time. In turn, each insurer
pools the cash deposited by all its investors into a single fund invested in a
portfolio of assets.

The fund holds reserves that vary to offset shocks to asset returns. Reserves
increase when asset returns are high and decrease when asset returns are low,
so that contract returns are an order of magnitude less volatile than funds asset
returns. Reserves are pooled across investors and passed on between investors
who hold contracts over different periods. Throughout the paper, we define the
set of investors who hold a contract over a given period as an investor cohort.
The fact that reserves are passed on between successive investor cohorts causes
redistribution across cohorts. Investors receive a transfer from reserves when
asset returns are low, and contribute to reserves when asset returns are high.
Part of these transfers net out within investors’ holding period. Only the net
transfer received from or contributed to reserves over investors’ holding period
represents redistribution across investor cohorts. Using regulatory and survey
data from France, we estimate that intercohort redistribution amounts to 1.4%
of total account value per year, which represents 17 billion euros redistributed
across investor cohorts every year, or 0.8% of gross domestic product
(GDP).

This finding challenges the notion that intercohort risk sharing cannot be
achieved in competitive markets. Allen and Gale (1997) study savings contracts
that share market risk across investor cohorts through a reserve mechanism

Gollier (2008) estimates that intercohort risk sharing increases the certainty equivalent of capital income by 25%
relative to an economy without intercohort risk sharing.
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similar to that of euro contracts. They study two polar cases, showing that (a) a
financial intermediary can implement intercohort risk sharing if it is protected
from competition, that is, if investors must invest with the intermediary
regardless of the reserves level, and (b) competition unravels intercohort risk
sharing if investors are fully strategic and hence invest in contracts only when
reserves are high and opt out when reserves are low, that is, if demand for
contracts is infinitely elastic to reserves. In practice, (a) does not apply to euro
contracts, because insurers compete with each other as well as with alternative
investment options. Moreover, the large amount of intercohort redistribution
we observe in the data rules out the assumption of infinitely elastic demand in
(b). To our knowledge, no theoretical framework exists to analyze intercohort
risk sharing in real-world euro contracts. Our second contribution is to study,
theoretically and empirically, the conditions enabling intercohort risk sharing.

We develop a model in which long-lived intermediaries compete in selling
savings products to successive cohorts of investors. We characterize how the
amount of intercohort risk sharing depends on the elasticity of demand for
contracts with respect to the expected contract return conditional on reserves.
The model nests the two polar cases of perfectly inelastic demand and perfectly
elastic demand that have been studied in the literature. In line with this literature,
we show asset risk can perfectly be shared across investor cohorts when demand
is inelastic. Instead, when demand is elastic, investors behave opportunistically
and exploit the predictability of contract returns: they flow into (out of) contracts
when reserves are high (low), partially unravelling risk sharing across cohorts.
In the limit when demand is perfectly elastic, intercohort risk sharing fully
unravels so that the savings products are akin to pass-through mutual funds,
in line with Allen and Gale (1997). In a nutshell, the equilibrium level of
intercohort risk sharing crucially (and monotonically) depends on demand
elasticity.

The intercohort risk sharing achieved by the contracts cannot be replicated
using market instruments. In this sense, the contracts complete markets.
The reason being that contracts exploit a dimension of risk sharing—cross-
cohort risk sharing—that cannot be achieved in financial markets, implying
the contract has a lower risk exposure than the underlying insurers asset
portfolio.

Our model shows we can estimate demand elasticity and the corresponding
amount of intercohort risk sharing from two moments in our data. The first
moment is the regression coefficient of contract return on contemporaneous
asset return, conditional on the level of reserves. When demand is inelastic,
contracts share risk across investor cohorts. In this case, the contract return
depends on the level of reserves, but not on contemporaneous asset return
beyond its effect on reserves. The intuition behind this idea is similar to that
behind the permanent income hypothesis, whereby optimal consumption does
not depend on current income beyond its effect on permanent income. By
contrast, when demand is elastic, little intercohort risk sharing occurs, and
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the contract return strongly depends on the contemporaneous asset return. We
estimate panel regressions and, controlling for the level of reserves, we show the
contract return does not depend on the asset return in the current year. Therefore,
the evidence is consistent with low demand elasticity and, correspondingly,
sizeable intercohort risk sharing.

The second moment that is informative about demand elasticity is the
regression coefficient of investor flows on reserves. A high level of reserves
predicts high expected contract returns, so that the sensitivity of flows to
reserves is directly related to demand elasticity. We run panel regressions and
find that the sensitivity of flows to reserves is close to zero, again consistent
with low demand elasticity. One issue when regressing flows on reserves is that
reserves are potentially endogenous to unobserved demand shocks, which is a
standard issue one encounters when estimating demand functions by regressing
quantity on price. Our model shows the past asset return is a valid instrument for
reserves to estimate the sensitivity of flow to reserves. Instrumenting reserves,
the sensitivity of flows to reserves remains close to zero.

Why is demand inelastic to reserves, allowing for intercohort risk sharing?
We first rule out explanations based on switching costs related to taxes or fees.
In particular, we study investors buying a new contract. These new investors
do not face switching costs. Despite no switching costs, and although high
reserves predict high contract returns, we find new investors’ flows do not
react to reserves. An alternative hypothesis is that investors are inelastic to
expected contract return because they have strong preferences for other contract
characteristics, such as risk exposures. Inconsistent with this hypothesis, we
show that high- and low-reserves contracts are similar in their exposure to both
systematic and idiosyncratic risks.

We hypothesize that demand is inelastic to reserves because investors
lack the knowledge to predict contract returns using reserves. In line with
this hypothesis, we show that contracts held by investors with a small
investment amount (less than 250,000 euros) have a flow-reserves sensitivity
indistinguishable from zero, whereas contracts with a large investment amount
(greater than 250,000 euros) exhibit a positive and significant flow-reserves
sensitivity. This result helps us further rule out the hypothesis that investors sort
into contracts based on other contract characteristics, such as risk exposures:
rationalizing this result under this alternative hypothesis would require to
explain why the heterogeneity in risk preferences is significantly smaller
among wealthier investors than among less wealthy investors. Instead, this
result is consistent with interpreting the investment amount as a proxy for
wealth and financial sophistication, whereby less sophisticated investors fail
to predict contract returns using reserves.” Differences in demand elasticity

Using data from a French life insurer, Bianchi (2018) studies households’ portfolio allocation between mutual
funds and euro contracts. He constructs a survey-based measure of financial literacy and shows this measure is
highly correlated with household wealth.
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across investors with different wealth levels can arise if investors must incur a
fixed cost to acquire the knowledge or information necessary to understand the
sources of contract return predictability (Lusardi and Mitchell 2014).

Perhaps paradoxically, the lack of household financial sophistication enables
more risk sharing than would be possible if households were perfectly informed
and acted accordingly. The idea that ignoring privately valuable information can
be socially beneficial because it improves risk sharing goes back to Hirshleifer
(1971). Our results are an illustration of this principle in the context of
aggregate risk sharing: investor inertia, while individually suboptimal, improves
(intercohort) risk sharing.’

To quantity the welfare benefit of intercohort risk sharing, we consider a
simple portfolio choice model in which the investor can invest in the risk-
free asset, the risky asset, and evaluate the welfare gains from adding the
euro contract to the set of investable assets. We define the welfare benefit of
intercohort risk sharing as the certainty equivalent gain of adding the contract
to the set of investable assets. We estimate it to be 90 basis points (bps) per year
for an investment horizon equal to the sample average of 12 years. The welfare
benefit decreases with the investment horizon. The reason being that return
smoothing is less effective at a long horizon because shocks to asset return
are absorbed by reserves in the short run but are eventually passed through to
investors as reserves are eventually distributed though contract returns. We also
show that, perhaps surprisingly, the welfare benefit does not depend much on
risk aversion. The reason being that the contract is quite safe, so the investor
optimally uses it as a substitute for the risk-free asset. The magnitude of the
welfare benefit is therefore determined by the premium earned by the contract
over the risk-free asset and not so much by the reduction in risk relative to the
risky asset.

We quantity the welfare benefit of investor stickiness. We run counterfactual
analyses for different values of the elasticity of demand. We find that, if the
elasticity increases from zero to the level of elasticity of deposits estimated
by Drechsler, Savov, and Schnabl (2017), the contract return becomes more
volatile and thus a less good substitute for the risk-free asset, reducing its
welfare benefit by a factor of two.

Our paper contributes to the recent literature that studies savings products
implementing cross-sectional sharing of aggregate risk between investors and
the financial intermediary. Examples include variable annuities with return
guarantees sold by U.S. life insurers (Koijen and Yogo 2022; Ellul et al. 2021)
and structured products sold by European banks (Célérier and Vallée 2017,
Calvet et al. forthcoming). In these products, the intermediary bears part of

In the context of health insurance, Handel (2013) shows that consumer health plan choice inertia reduces adverse
selection and hence improves (cross-sectional) risk sharing. Hortagsu and Syverson (2004), Drechsler, Savov, and
Schnabl (2017), and Koijen and Yogo (2022) study the implications of investor inertia on competition between
financial intermediaries.
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the risk by hedging investors’ returns from market risk. Such cross-sectional
risk sharing is also at play in euro contracts, but we show it is an order of
magnitude smaller than intertemporal risk sharing across investor cohorts.
Crucially, cross-sectional risk sharing hinges on intermediaries’ risk-bearing
capacity.* By contrast, euro contracts shift most of the risk to households and
share it across cohorts.

Similar to euro contracts, defined benefits pension plans contain an element
of intercohort risk sharing, because defined benefits sponsors can spread shocks
across cohorts by adjusting the contributions of futures employees, and they
also can be bailed out by future taxpayers (Novy-Marx and Rauh 2011; Novy-
Marx and Rauh 2014). However, the market structure and thus the determinants
of demand elasticity are different for euro contracts and defined benefits plans.
Greenwood and Vissing-Jorgensen (2019) study the implications of pension
funds and insurance companies’ behavior for asset prices, and Scharfstein
(2018) examines their role in shaping the financial system.

We also contribute to the theoretical literature on the private implementation
of intercohort risk sharing. The notion that financial markets cannot implement
intercohort risk sharing because they do not allow current and future investor
cohorts to trade with each other goes back at least to Stiglitz (1983)
and Gordon and Varian (1988), whereas Ball and Mankiw (2007) study
intercohort risk sharing in a hypothetical economy in which current investors
can trade with future investors. Allen and Gale (1997) and Gollier (2008)
study how intercohort risk sharing can be implemented by an intermediary
having monopoly power over households’ savings. Allen and Gale (1997)
show intercohort risk sharing unravels if investor demand is infinitely elastic
to reserves. We extend this literature by considering the case of finite
elasticity, showing the equilibrium level of intercohort risk sharing decreases
monotonically from perfect to nonexistent as the elasticity increases from zero
to infinity.

Euro Contracts

1.1 Institutional framework

European life insurers sell savings contracts designed to implement intercohort
risk sharing. We study the market for these contracts in France, where they are
called euro contracts. Despite being sold by life insurers, euro contracts are pure
savings products which do not entail insurance against longevity or mortality
risk. Life insurers selling euro contracts can be subsidiaries of insurance

Life insurers’ product supply shifts inward when their capital position weakens (Koijen and Yogo 2015; Koijen
and Yogo 2022; Ge forthcoming; Sen and Humphry 2020). Their capital position also affects their asset portfolio
choices (Ellul et al. 2015; Becker and Ivashina 2015; Ge and Weisbach 2021).
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holding companies, subsidiaries of bank holding companies, or stand-alone
life insurance companies.’

Investments in euro contract amount to 1.4 trillion euros as of 2015, which
represent one-third of French household financial wealth (Insee 2016). Another
one-third of household financial wealth is invested in risky securities and
investment funds, held directly or through special vehicles. The last third
is invested in short-term instruments including checking accounts, savings
accounts, and regulated savings products, such as the ones analyzed at the
end of Section 4.3.

When an investor buys a euro contract, the insurer creates an account on
which the investor can deposit and withdraw cash at any time. We refer to the
cash balance on the investor’s account as the account value. The insurer pools
the cash deposited by all investors in a single fund called the euro contract
fund, which is invested in a portfolio of assets. Regulation defines the set of
assets euro contract funds can invest in. This set includes most assets issued in
Organisation for Economic Co-operation and Development (OECD) countries,
such as sovereign and corporate bonds, loans, public and private equities, real
estate, and shares in investment funds holding such assets.® Table 1 reports the
summary statistics on the asset composition of French euro contract funds.

At the end of each calendar year, the insurer chooses how to split the asset
return into three parts: the contract return paid to current investors, the change
in reserves, and the insurer’s profit. This flexibility allows insurers to provide
investors with insurance against market risk. The contract return chosen by the
insurer can differ from the return on the assets held by the insurer if the insurer
chooses to use reserves or its profit as a buffer.

Reserves have two key features that jointly give rise to intercohort risk
sharing. First, reserves are owed to investors. While the insurer can choose how
to split the asset return between current contract return, change in reserves, and
insurer profit, this choice is subject to the regulatory constraint that the sum of
the first two components must be at least 85% of asset income. Therefore, the
insurer cannot transfer funds from reserves to its equity, because its profit must
be at most 15% of the asset income.” However, the insurer can freely choose
how much funds to transfer between reserves and investors’ accounts to smooth
contract returns over time, that is, how much market risk insurance it provides
to its investors.

Second, reserves are pooled across all investors and passed on between
successive investor cohorts. In particular, new investors share in reserves

Mutual insurance companies, pension institutions, and reinsurance companies can also sell euro contracts. These
institutions are subject to a different regulation and account for only 4% of aggregate provisions (ACPR 2016).
We abstract from them in the empirical analysis.

See article R.332 of Code des Assurances. Asset regulation also includes diversification requirements, such
as preventing insurers from investing more than 65% of their asset portfolio in a given asset class. These
diversification requirements are not binding in our sample.

7 See Internet Appendix B.2 for a detailed description of the regulatory framework.
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Table 1
Summary statistics

Mean SD P25 P50 P75 N
A. Regulatory filings
Account value (bn euro) 13.9 30.1 0.9 3.1 11.9 978
Inflows (% account value) 10.5 3.8 7.8 10.5 12.3 978
Outflows (% account value) 8.1 2.0 7.1 7.9 8.8 978
Reserves (% account value) 10.9 6.8 6.7 10.5 14.3 978
Portfolio share: bonds (%) 80.4 8.0 75.4 81.5 85.6 978
Portfolio share: stocks (%) 13.5 6.3 10.0 12.5 15.7 978
Asset return (%) 4.9 4.4 2.1 4.4 7.5 978
Contract return (%) 4.0 0.9 3.3 4.0 4.5 978
B. Prospectus data
Management fee (%) 7 13 .64 73 77 578
Entry fee (%) 33 .87 3 35 3.8 578
C. Survey data
Net-of-fees return (%) 2.7 45 2.4 2.8 3 13,672
Minimum guaranteed return (%) 35 73 0 0 0 13,672

Panel A presents regulatory filings data at the insurer-year level for 76 insurers over 2000-2015. All statistics
(except for account value) are weighted by the insurer share in aggregate account value in the current year.
Account value is total account value at year-end in constant 2015 billion euros. Inflows are inflows (premiums)
divided by beginning-of-year account value plus one-half of net flows. Outflows are outflows (redemptions
plus payment at contract termination) divided by beginning-of-year account value plus one-half of net flows.
Reserves is total reserves divided by year-end account value. Portfolio share: bonds is the share of (corporate
and sovereign) bonds, held either directly or through funds, in the asset portfolio. Portfolio share: stocks is the
share of stocks, held either directly or through funds, in the asset portfolio. Asset return is the asset return.
Contract return is the average before-fees contract return. Panel B presents prospectus data on fees at the
insurer-year level for 48 insurers over 2000-2015. Management fees is the average management fees across
contracts offered by the insurer and open to new subscriptions in the current year. Entry fees is the average entry
fees across contracts offered by the insurer and open to new subscriptions in the current year. Panel C presents
survey data at the contract-year level for about 2,700 outstanding contracts per year from 56 insurers over
2011-2015. Net-of-fees return is the contract net-of-fees return. Minimum guaranteed return is the before-fees
minimum return guaranteed by the insurer.

accumulated by previous investors, and investors redeeming their contracts
give up their share of reserves. The pooling of reserves across investor cohorts
happens because the contract return on a given contract is the same for all
investors who hold this contract, regardless of when they bought the contract.

Insurers offer a range of contracts, for instance, a basic contract and a
premium contract with a minimum investment amount and a lower fee. Since
they are allowed to pay different returns on different contracts, insurers could
close existing contracts to new subscriptions when reserves are high, and create
a new vintage of contracts on which they will pay higher returns. Doing so
would undo reserve pooling across investor cohorts. Using data at the contract
level, we show in Section 4.2 that insurers do not follow this strategy; therefore,
reserves are effectively pooled across investor cohorts.

The rest of this section summarizes the other main features of the institutional
framework.

Minimum return guarantees. Euro contracts include a minimum guaranteed
return for the annual contract return. This minimum guaranteed return is fixed
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at the subscription of the contract. Against a backdrop of decreasing interest
rates, French insurers have strongly reduced guaranteed rates since the 1990s.
The average guaranteed rate is now close to zero (Darpeix 2016), such that
minimum return guarantees are not binding for the vast majority of contracts
during the sample period (see Section 1.2).

Fees. Insurers usually charge entry fees when investors deposit cash on their
account (front-end loads), and annual management fees. They are not allowed to
charge exit fees (back-end loads). By regulation, at least 90% of insurers’ annual
technical income, equal to fees minus the insurer’s operating costs, must be
paid to investors. This fraction goes up to 100% if technical income is negative.
Insurers can choose to pay investors immediately via the contract return, or
later by increasing reserves. The implication of this regulation is that insurers
cannot extract money from reserves by raising fees on new investors, because
90% (or 100%) of these fees must eventually be returned to investors. Neither
can they extract money from reserves by increasing management fees, which
are contractually set for each contract, nor by manipulating their operating
costs, which accrue to their employees or brokers.

Taxes. Contract returns are taxed upon withdrawal at a rate that depends on
the age of the contract at the time of withdrawal. The tax rate is decreasing in
contract age for the first 8 years of the contract. This creates a potential switching
cost that we analyze in Section 5.1. The tax treatment of euro contracts is the
same as that of unit-linked contracts, which are investment vehicles also sold
by life insurers through which households can hold mutual funds. Therefore,
households can invest in mutual funds at the same fiscal cost as in euro contracts.

Solvency regulation. Insurers are subject to the Solvency I regulation during
the sample period. This regulation imposes that insurers hold a minimum
amount of capital such that the sum of capital and unrealized capital gains
is at least equal to 4% of total account value.® These capital requirements
are independent of the portfolio asset composition or the minimum return
guarantees. Solvency II came into effect in 2016, which is after the end of the
sample. Although insurers anticipated the new regulation, Solvency II did not
change the regulatory framework at the basis of intercohort risk sharing, such
as the constraint that at least 85% of asset returns must eventually be paid out
to investors and how reserves are created and can be used. Under Solvency II,
capital requirements depend on the portfolio asset composition and the return
guarantees issued. Despite the new regulation, the insurer supervisor found no
significant change in asset riskiness in response to Solvency II (Baddou et al.
2016). There was no effect on minimum guaranteed returns, which were already
close to zero during the sample period (Darpeix 2016).

See article L.334 of Code des Assurances. We show in Internet Appendix B.3 that insurers’ equity alone is never
below 4% of total account value throughout the sample period, including during the 2008 Global Financial Crisis
and the 2011-2012 European sovereign debt crisis.
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1.2 Data and summary statistics

Our main source of data comprises regulatory filings obtained from the national
insurance supervisor (Autorité de Contrdle Prudentiel et de Résolution) for the
years 1999 to 2015. The data cover all companies with life insurance operations
in France and contain detailed financial statements.” We focus on insurance
companies with more than 10 million euros of euro contracts total account
value. Because we need lagged values to calculate the change in reserves, the
sample period of our analysis is 2000-2015. The final sample contains 76
insurers and 978 insurer-year observations.

Panel A of Table 1 reports summary statistics from the regulatory filings.
Statistics on ratios are value-weighted by the insurer’s share in aggregate
account value in the current year. The average (median) insurer has 13.9
(3.1) billion euros of account value. Inflows (premiums), which include cash
deposited in newly opened contracts and in existing contracts, represent, on
average, 10.5% of account value per year. Outflows, which include partial
and full redemptions, either voluntarily or at contract termination (investor
death), represent on average 8.1% of account value per year. The combination
of positive net flows and compounded contract returns generates an increasing
trend in aggregate account value as plotted in Internet Appendix Figure B.1.
Aggregate account value grows from 500 billion euros in 2000 to 1,200 billion
euros in 2015 (all amounts are in constant 2015 euros). Market concentration is
relatively low, with a Herfindahl-Hirschman Index around 800 and total market
shares of the top-five insurers slightly below 50%.

The average reserve ratio is 10.9%. On the asset side, 80.4% of funds’
portfolios are invested in sovereign and corporate bonds, 13.5% in stocks, and
the rest in real estate, loans, and cash. The average asset return is 4.9% per year
and the average contract return before fees is 4.0% per year, both in nominal
terms.

Three factors can explain the wedge between the average asset return and
the average contract return. First, as described in Section 1.1, the insurer can
keep up to 15% of the asset return as profit, which represents about 75 bps on
average. Second, part of the asset return has been retained to offset the dilution
of reserves induced by positive net flows over the sample period. Given the
average net flow rate of 2.4% per year and the average reserve ratio of 10.9%,
insurers would have had to retain 0.024 x 0.109 25 bps of asset returns per
year to maintain the reserve ratio constant. Third, the average reserve ratio is
actually about 3.5 percentage points higher at the end of the period than at
the beginning (see Internet Appendix Figure B.2), which implies insurers have

See Internet Appendix C.1 for details about the data used in the paper and variable
construction. The data are available through the Banque de France’s open data room
(https://www.banque-france.fr/en/statistics/access-granular-data/open-data-room).
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retained over this 15-year period an additional 0.035/152>25 bps per year on
average.

We complement the regulatory data with contract-level information from
two sources. First, we retrieve information on fees from the data provider
Profideo, which collects information on contract characteristics from contract
prospectuses. The data consist in a snapshot of contracts with positive
outstanding account value in 2017, even if the contract is closed to new
subscriptions at that date. The fee structure is fixed at the subscription of the
contract and written in the contract prospectus. Given that for every contract,
some investors hold their contract for many years, it is sufficient to have a
snapshot of outstanding contracts in 2017 to retrieve a complete picture of the
fee structure of all contracts sold throughout the sample period 2000-2015. The
data also include information on the time period during which contracts were
open to new subscriptions. We keep contracts for which this period overlaps
with the sample period. Fifty-seven percent of insurers, representing 68% of
account value in the regulatory filings, can be matched with this data set. Panel
B of Table 1 shows summary statistics on fees aggregated at the level of insurer-
years in which the contract is open to new subscriptions, which is the level at
which we run regressions using these data. Management fees are, on average,
70 bps of account value. Entry fees are, on average, 3.3%.'°

Our second source of contract-level information is a survey (Enquéte Revalo)
conducted by the insurance supervisor every year from 2011 to 2015 among
all the main insurers. The data cover 81% of aggregate account value in the
regulatory filings. We retrieve information on net-of-fees contract returns,
minimum guaranteed return, total account value, and number of investors,
which allows us to calculate the average invested amount for every contract.
Panel C of Table 1 presents summary statistics from this data set at the contract-
survey year level. The average net-of-fees contract returnis 2.7%.'! The average
(75th percentile) minimum guaranteed return is 35 bps (0), which is well below
the average contract return of 2.7 percentage points over the same period.
Thus, the minimum guaranteed rate is not binding for the vast majority of
contracts: the net-of-fees contract return is strictly larger than the guaranteed
return for 98% of contracts. This figure actually overstates the extent to which
the minimum guaranteed return is binding, because the guaranteed return is
before-fees. Assuming uniform management fees at the sample average of 70
bps, over 99% of contracts have a nonbinding minimum guaranteed return.

Recall that fees do not map one-to-one into insurer profit because insurers must return at least 90% of fees to
investors (see Section 1.1).

It is lower than the average before-fees contract return in regulatory filings (4% in panel A) minus average
management fees (0.7% in panel B) because the sample period is 2011-2015 for the survey data, whereas it is
2000-2015 for the regulatory filings, and contract returns are lower toward the end of the sample period (see
Figure 1).
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2. The Accounting of Intercohort Risk Sharing

In this section, we quantify intercohort risk sharing in euro contracts based on an
accounting framework which formalizes the institutional framework presented
in Section 1.1.

2.1 Accounting framework
V.. denotes the total account value with insurer j at the end of year ¢ after
payment of the annual net-of-fees return y; ;. It evolves according to

Vie=(1+y;)Vji—1+Flowj,, )]

where Flow,,, is net flow to insurer j in year ¢.!2 The balance sheet of the fund
at the end of year ¢ is
A =Vii+R;;, 2)

where A, is asset value and R ; is reserves at the end of year . Assets evolve
according to
Aj’[:(1+xj"[)Aj’t71+Flou)j’[_Hj’[, (3)

where x; ; is asset return and IT; ; is insurer j’s profit in year . Combining (1),
(2), and (3), we obtain

XjiAj 1=y Vi—1+Ij+AR;;, 4

where AR;;=R;;— R;;_1. Equation (4) describes how asset income (on the
left-hand side) is split into three parts: the amount credited to current investors
(first term on the right-hand side), insurer profit (second term), and change
in reserves (third term). Returns paid to investors can therefore be hedged
against market risk if fluctuations in asset returns are absorbed by the insurer
and/or by reserves. Since beginning-of-year reserves have been accumulated by
past investors and end-of-year reserves are available for distribution to future
investors, the change in reserves represents a payoff to past and future investors
and is at the root of intercohort risk sharing.

2.2 Contract return smoothing
Figure 1 compares the time series of asset return x;; and contract return y; ,,
averaged across insurers. The key pattern is that the contract return is an order
of magnitude less volatile than the return on underlying assets. Thus, euro
contracts provide investors with insurance against market risk.

Equation (4) shows two potential sources of market risk sharing exist. Static
(cross-sectional) risk sharing between investors and the insurer arises if the

To simplify the exposition, we write Equation (1) assuming that flows take place at the end of the year after
payment of the annual return. In the empirical analysis, we assume that flows are uniformly spread throughout
the year and therefore earn half the annual contract return.
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Figure 1

Asset return versus contract return

The figure graphs the value-weighted average contract return (solid blue), which is an order of magnitude less
volatile than the value-weighted average asset return (dashed red).

difference between asset income and the amount credited to current investors is
absorbed by the insurer. Intertemporal risk sharing between successive cohorts
of investors arises if reserves absorb this difference.

To assess the contribution of reserves to the provision of insurance, Figure 2
compares two series. The solid blue line represents the difference between the
amount credited to current investors and asset income: y; V;,_1—x;;Aj 1.
It represents the total transfer to current investors, that is, the transfer from the
insurer plus the transfer from reserves. The dashed red line represents minus
the change in reserves: —AR; ;. It represents the transfer from reserves. Both
series are summed across insurers and normalized by aggregate account value.
The figure shows how the two series track each other very closely; that is,
variation in reserves absorbs almost all of the difference between asset return
and contract return. Therefore, virtually all insurance against market risk is
provided to investors through reserves.

2.3 Intercohort redistribution

Contract return smoothing using reserves implies that wealth is transferred
across time, but it does not necessarily imply that wealth is transferred across
investor cohorts because part of intertemporal transfers net out within investors’
holding period. To illustrate this point with a stylized example, consider an
investor holding a contract for 2 years during which the asset return and contract
return are as follows:
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Contract return - Asset return
————— Minus change in fund reserves

Figure 2

Reserves absorb asset return fluctuations

The figure visualizes the time-series variation in the difference between aggregate contract return and asset return
normalized by account value (y; V;_1 —x; A;_1)/ V;—1 (solid blue) explains almost all of the time-series variation
in aggregate transfer from reserves normalized by account value —AR;/V;_; (dashed red).

Year 1 Year 2
Asset return 0 6
Contract return 4 4

Reserves absorb the difference between the asset return and contract return.
In year 1, the investor receives a positive transfer from reserves equal to four.
In year 2, the investor makes a transfer to reserves equal to two. Therefore,
part of the year-on-year transfers net out over the investor’s holding period.
The net transfer to the investor is then 4 —2=2 over 2 years, or 1 per year. Our
methodology to quantify intercohort redistribution follows the same logic as in
this example, netting out transfers within investors’ holding period in order to
isolate the intercohort component.

To quantify intercohort redistribution induced by changes in reserves, we
compare the actual contract return paid out to investors with the return they
would obtain in a counterfactual with constant reserves, the same asset return,
and the same insurer profit as in the data. Relative to the counterfactual, investors
holding a contract with insurer j in year ¢ receive a transfer from reserves equal
to —AR;,. Consider investor i holding a contract from beginning of year #; to
end of year #1, and V; ; . denotes her account value at the beginning of year 7.
She receives in year t a transfer proportional to her weight in the insurer’s total
account value, equal to M( AR; ;). Summing over her holding period as

in the two-period example we obtain investor i’s holding period net transfer,
which we apportion to each year in proportion to the beginning-of-year account
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value:'3

n

NetTransfer; ;,= llvl’j’tfl Vijet (—AR; ). ®)
Z‘[:to Vi,j,r—l =ty Vj,r—l

The net transfer received by an investor depends on her holding period, that is,
the year in which she starts investing and the year she redeems (and on the time
profile of her investment within the holding period). Because investor cohorts
are defined by the contract holding period of the cohort’s investors, transfers
across investors are transfers across investor cohorts. Therefore, investors from
the same cohort are on the same side of redistribution. By contrast, investors
from different cohorts may be on opposite sides of the redistribution.

Panel A of Table 2 shows the net transfer (5) received by an investor as a
function of her holding period, for every possible holding period within the
sample period. We calculate the net transfer for an investor who holds the
value-weighted average contract and keeps a constant investment amount of
100 by withdrawing interests paid at the end of each year.'* The numbers
in the table represent the additional annual returns of the representative euro
contract relative to a counterfactual with constant reserves. For instance, an
investor buying a euro contract at the beginning of 2006 and redeeming it at
the end of 2011 earned an additional 1.5 percentage points per year relative to
a counterfactual with no smoothing, because insurers tapped reserves during
the 2008 stock market crash and the 2011 sovereign debt crisis. Conversely,
transfers turn negative for holding periods spanning the end of the sample period
characterized by decreasing interest rates, because insurers hoarded the high
bond returns as reserves during this period. Finally, shorter holding periods are
associated with larger intercohort transfers in absolute value, because a smaller
share of the intertemporal transfer takes place within the investor’s holding
period when the holding period is shorter. Hence, intercohort risk sharing plays
out not only at long investment horizons but also at shorter ones.

2.4 Aggregate intercohort redistribution
The aggregate amount transferred across cohorts each year ¢ is obtained by
summing up the net transfers (5) across all investors in the set Z/-' of investors

Transfers taking place in different years are not discounted differently because (85% of) asset returns are due to
investors regardless of the level of reserves; that is, investors are entitled to the same share of asset returns whether
assets are credited to the reserves or to their accounts. Therefore, only the total amount of reserve distribution
matters, but not its timing within an investor’s holding period.

We estimate the amount of intercohort transfer on the sample of insurers for which we have data throughout
1999-2015. Doing so leads us to make two adjustments to the sample. First, when an insurer acquires another
insurer, their reserves are pooled together. In this case, we consolidate both entities into a single one before the
acquisition date such that we have a single insurer with a constant scope throughout the sample period. Second,
we drop a few insurers that enter or exit during the sample period or have missing data in some years. The final
sample has 50 insurers that we observe continuously from 1999 to 2015 and that account for 94% of the aggregate
account value in the initial sample.
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Table 2
Intercohort redistribution

A. Net transfer by investor cohort

g

2010
2011
2012
2013
2014

2015
2000 2001 2002 2003 2004 2005 2006 2007 2008 2008 2010 2011 2012 2013 2014 .

exit year
B. Aggregate intercohort redistribution
Intercohort transfer
in % account value/year 14
in 2015 euros/year 17 billion
in % GDP 0.8

In panel A, Net transfer is defined in (5) for an investor buying a contract at the beginning of year #y (rows)
and redeeming it at the end of year #; (columns). An investor buying a contract at the beginning of 2006 and
redeeming it at the end of 2011 received an additional 1.5 percentage points per year relative to a counterfactual
with constant reserves. In panel B, Intercohort transfer is defined in (6) and equal to the sum of lifetime net
transfer across investors divided by total account value.

who hold a contract with insurer j in year ¢:

InterCohort Transfer ; , = Z |NetTransfer; ; ,|. (6)
i€zt

Before calculating the aggregate intercohort transfer using (6), we show
how the relation between variation in reserves and intercohort redistribution
can already be quantitatively approximated using a back-of-the-envelope
calculation. Suppose all investors have T'-year holding periods and the annual
transfer from reserves —AR;; is i.i.d. across time and normally distributed
with zero mean. Then, the expected annualized net transfer over 7 years

(i.e., expected Z;T=1 —AR;,;/T|)is equal to 1 /~/T times the expected yearly
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transfer from reserves (i.e., expected |— AR; ;|). Intuitively, a longer holding
period reduces intercohort transfers because a larger fraction of transfers from
reserves net out over investors’ holding period. The average outflow rate is 8.1%
per year, which implies an average holding period of 12 years. The average
absolute value of the yearly transfer from reserves is 3.7% of account value,
implying an average intercohort transfer of the order of 3.7%/+/12~1.1% of
account value per year. Accounting for holding period heterogeneity across
investors would lead to a larger intercohort transfer because of the convexity
of 1/4/T.

To have an exact measure of aggregate intercohort transfer (6), we would
need to observe the entire investment history of all investors, which is not
possible, because the investment history of investors still holding a contract at
the end of the sample period is not over. Two data limitations also exist. First,
regulatory data start in 1999; therefore, we do not observe the entire investment
history of investors who entered their contract before 1999. We can calculate
the net transfer for investors with holding periods within 2000-2015 (we need
one lagged year to calculate asset returns). Second, we observe inflows and
outflows at the insurer level, but not at the investor level, which implies that we
know the average holding period, but not its entire distribution. To calculate
intercohort transfers, we assume the outflow rate is constant across cohorts
at the insurer-year level and that investors only make one-off investments. !
Under this assumption, we can reconstruct the investment history of all cohorts
of investors and calculate the total intercohort transfer.

The value-weighted average amount of intercohort transfer is 1.4% of
account value per year (panel B of Table 2). Evaluated at the 2015 level of
aggregate account value of 1,200 billion euros, it amounts to an annual 17
billion euros that shift across investor cohorts on average, or 0.8% of GDP.!°

3. Model

The large-scale intercohort redistribution we document in the previous section
challenges the notion that intercohort risk sharing cannot be achieved in
competitive markets. This notion follows from the assumption that investors
are fully strategic and hence invest in contracts only when reserves are high and
opt out when reserves are low. When the elasticity of the demand for contracts

Formally, V; (1) denotes the year -total account value of contracts sold by insurer j in year 7y, we assume
Vii(to)=(1=0; )(1+y; )V, 1(ty) for all 1y <t, where the outflow rate 0; ; is calculated to match observed
outflows for insurer j in year ¢, that is, Zt0<,9_/-1,(1+y_]v‘,)Vj,,,l(to):Outﬂow_,-v,; and account value of new
contracts is calculated to match observed inflows to insurer j in year ¢, that is, Vj,,(t)=1nﬂow it See Internet
Appendix C.2 for details.

The assumption of outflow rates independent of contract age is likely to underestimate the amount of intercohort
transfer. Actual outflow rates are decreasing in contract age (FESA-GEMA 2013), implying the true dispersion
of holding periods is higher than the dispersion obtained under the assumption of the age-independent outflow
rate. Because expected annualized life transfer is convex in the holding period, underestimating the dispersion
of holding periods leads to underestimating intercohort transfer.
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to reserves is infinitely large, intercohort risk sharing unravels (Allen and Gale
1997). In this section, we relax this assumption and instead assume that the
elasticity of demand is finite. The model allows us to characterize how the
equilibrium amount of intercohort risk sharing depends on the elasticity of
demand, and to derive econometric specifications to estimate this elasticity.

3.1 Setup

The backbone of the model is the accounting framework presented in
Section 2.1. Every period t=1,2,...,+00, J>1 long-lived intermediaries,
indexed by j=1,...,J, sell one-period saving contracts. The contract offered by
intermediary j in period ¢ promises a return y;, contingent on all information
observable at the end of period ¢. At the beginning of period ¢, intermediary
J has reserves R;;_; and collects V;,_; from investors. The intermediary
has total assets V;,_i+R;;_1, which generate an exogenous return x;, with
E;_i[x;,]=r, where E,_; denotes expectation conditional on information at
the beginning of period 7. Asset risk may include a systematic component
and an idiosyncratic component determined by the covariance structure of
X =(Xo,4,...,xy), where j=0 defines investors’ outside option described
below.

As described in Section 1.1, the insurer profit is pinned down by the
regulation ruling profit sharing between investors and the insurer. Regulation
requires that the amount credited to investor accounts in any given year must
be at least 85% of financial income in this year, where financial income is
equal to asset return excluding unrealized capital gains. Empirically, unrealized
capital gains are the main component of reserves and by far its main source of
variation.!” Accordingly, we write the regulatory constraint as

Y.t Vj,tfl =(1 _¢)(xj,rAj,t - ARj,t),

where ¢ €(0,1) equals 15% in the French regulatory framework. Using the
budget constraint (4), this implies

Hj.t=%yj,t Vj,z—l- @)

The regulation imposes a cap on profits whereas for simplicity, we write

the regulatory constraint with an equality. In Internet Appendix A.2, we derive

a sufficient condition for the regulatory constraint to be binding. Intuitively,

the constraint is binding if demand is sufficiently inelastic, in which case

the equilibrium profit is large absent the regulatory constraint. We show this
condition is empirically validated in Section 4.

See Internet Appendix B.2 for a detailed description of the regulatory framework and an empirical decomposition
of reserves. The fact that the variation in reserves is mostly driven by unrealized capital gains can be visualized
in Internet Appendix Figure B.2. In the insurer-year panel, the change in unrealized capital gains explains 98%
of the variation in total reserves.
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By constraining the intermediary’s profit to be proportional to the contract
return, regulation exogenously pins down the share of asset risk borne by the
intermediary, and prevents the intermediary from using its equity to provide
additional insurance to investors. Even if the regulatory constraint is written
with “<” instead of “=", transferring wealth between the intermediary and
investors across states of nature is still not feasible, because doing so involves
lowering the intermediary’s profit below the regulatory cap in some states
(which is feasible) and increasing it above the cap in other states (which would
violate the regulatory constraint). Therefore, insurance is provided to investors
only through intercohort risk sharing. This property of the model is in line with
the evidence in Section 2.2 that insurers’ equity does not absorb losses on the
asset portfolio, even during the 2008 Global Financial Crisis and the 2011-2012
European sovereign debt crisis. Since the model rules out that intermediaries
absorb losses, we can assume for simplicity that intermediaries are risk neutral
without creating the possibility of risk sharing between intermediaries and
investors. Given the evidence in Appendix Figure B.3 that capital requirements
never bind over the sample period, including during two crises, we also abstract
from modeling solvency requirements. Intermediaries maximize expected
profit discounted at the expected rate of asset return

+00

m;,
Eo 2 (T+r) | ®

t=1

Intermediaries face the sequential budget constraint (4) for all r>1. We
normalize initial reserves R; o to zero. To rule out Ponzi schemes, reserves
must satisfy the transversality condition

Rj.
im >0. 9
t—+00 (1471)

We model investor demand for contracts using a multinomial logit model.
Every period a mass one of investors have one unit of wealth to invest. Each
investor buys the contract that provides her with the highest expected utility.
Investor i’s expected utility from investing with intermediary j in period ¢ is

aE o [u(y; ) +& 1+ j.i1 (10)

The term o E,_[u(y; )] represents the expected indirect utility provided by
contract return y; ,, where o >0, u’ >0, u” <0, and without loss of generality
we normalize u'(r(1—¢))=1. & j,1—1 1s nonreturn preference for intermediary j
in period ¢ shared across all investors and v; ; ;1 is investor i’s idiosyncratic
preference. §; ;1 and v, ; . are indexed by ¢ — 1 because they are realized at
the end of period ¢ — 1. The vector of demand shocks & = (&, ...,&,.,) follows
a random walk that is uncorrelated with asset returns, E,_{[& |x;]=&;_1, such
that in equilibrium, the asset return will affect investor demand through its effect
on the contract return and through this effect only. ¥; ;,_ is distributed i.i.d.
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extreme value across investors in each cohort, yielding the usual logit demand
function (11).

« is the key parameter of the model. It parameterizes the elasticity of demand
to the expected utility of contract return, capturing in reduced form several,
nonmutually exclusive, mechanisms leading to imperfectly elastic demand,
such as nonreturn product differentiation, switching costs, and information
frictions (Hortagsu and Syverson 2004). Investors might be able to anticipate
future contract returns yet do not necessarily buy the contract with the highest
expected utility of return, because they trade off returns against other contract
attributes or because portfolio rebalancing is costly. Alternatively, information
frictions might prevent investors from figuring whether certain contracts have
higher expected returns than others, and which ones. We provide evidence for
and against these mechanisms in Section 5.

o should be interpreted as the elasticity of demand to the expected utility
of contract return conditional on reserves. Indeed, in the model, variation in
reserves is the only source of contract return predictability. In practice, other
sources of return predictability might exist, such as heterogeneity in asset
risk and management skills across intermediaries, which is absent from the
model. Demand may also react to changes in expected returns on outside
investment opportunities. The elasticity of demand to these other sources of
return predictability may differ from «, for example, if these other factors
are more salient or easier to apprehend than reserves. We provide evidence
supporting this interpretation in Section 4.3.

Investors have access to an outside investment opportunity indexed by j =0,
which yields expected utility given by (10) with &y ,_; normalized to zero,
Yi.0..—1 distributed i.i.d. extreme value, and yo,; =(1 —¢g)xo ;. The parameter
¢ > 0 captures the fees and other costs of investing in the outside investment
opportunity. The outside investment opportunity can be thought of as other
liquid saving instruments, for example, mutual funds or direct investment in
financial markets. We assume the cost of investing through the outside option
is the same as the cost of investing through intermediaries, that is, ¢y =¢.18

Contract return in period ¢ is contingent on all observable information at the
end of period ¢, which includes the history of asset returns and demand shocks.
Thus, y;, is a function of (x,&"), where the ¢ exponent denotes history up to
end-of-period 7. The demand for intermediary j’s contract in period ¢ is

expla ;1 [u(y; )]+ 1}
S oexpla B [u(yi )] +Ei1)

The problem of an intermediary is to maximize profit (8) by choosing
a contract return policy subject to the budget constraint (4), the profit

Vi = (11)

In France, as in several other European countries, life insurers sell mutual funds through unit-linked contracts
that are subject to the same fee structure and tax treatment as euro contracts. In such cases, ¢g=¢ by design.
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function (7), the transversality condition (9), and the demand function (11).
Each intermediary takes other intermediaries’ contract return policies as given.
An equilibrium is defined as a fixed point of this problem."?

Finding a general analytical solution to this problem is difficult. To simplify
the problem and obtain an explicit solution, we solve the model using a first-
order approximation.” We assume shocks have bounded support, that is, there
exists o >0 such that deviations of x;; and &;; from their ¢ — I1-conditional
expectations lie in [—o,0] for all j and ¢, and that, for some period T, these
deviations are zero for r > T'. The value of T can be any positive integer, so that
our analysis covers any finite number of shocks, however large. We calculate
an explicit solution that is valid as long as o is small, that is, fluctuations in
asset return and demand are not too large.

3.2 Equilibrium
Our first result shows how the equilibrium contract return depends on the history
of past and current asset returns.

Proposition 1. Contract return of intermediary j in period ¢ is

Vie X (A=@) [ 1+ Bio()xjs—r) |+ f1,(F —r.E"), (12)

s=1
where

Bj.i(s) = # for s <t, (13)
at+ =P

Bty = 01 (14)

a+==p0j

pj>0 is an intermediary-specific constant that is independent of « and
proportional to investors’ coefficient of relative-risk aversion. f;,(.) is a
function of the history of weighted-average asset return shocks X’ —r and the
history of demand shocks &’. Closed-form expressions for these variables are
in Internet Appendix A.1.

Equation (12) shows that the contract return is equal to the expected asset
return, 7, plus a function of the history of shocks to the intermediary’s asset

Because we do not clear the capital market, our model is in partial equilibrium. The model is equivalent to a
general equilibrium model with constant returns to capital as in Allen and Gale (1997) and Ball and Mankiw
(2007). Suppose each intermediary j can lend capital to competitive firms using a linear production function
Y =(14x;)K; 1, where Y , is output and K ; ,_1 is capital. In such an economy, an increase in reserves
leads to an increase in the aggregate capital stock. An alternative interpretation of our model is that of a small
open economy, in which case an increase in reserves leads to a capital account deficit.

The advantage of using a first-order approximation is that it eliminates any possible interaction between the
shocks occurring in different periods. Ball and Mankiw (2007) use a similar method to solve the complete-market
equilibrium in which investors are allowed to trade with future investor cohorts.
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return, x; ; —r for 1 <s <t, minus the compensation of the intermediary which
consists in a fraction ¢ of those asset returns, and a function of the history of
average asset returns X' and demand shocks &’. The key coefficients in (12) are
the B, ,(s), which pin down the extent of risk sharing across investor cohorts.
Bj,:(s) measures the sensitivity of period-¢ contract return, y;;, to period-s
asset return, x; ;. When g, ,(s) > 0, the period-¢ investor cohort bears some of
period-s asset risk.

The contract return policy (12) implies period-s asset risk is shared between
the current (period-s) cohort (because B;(s)>0) and all future cohorts
(because B ;(s) > 0fort > s). In turn, Equations (13) and (14) show the extent of
intercohort risk sharing depends on investor risk aversion through the parameter
pj,» and on the elasticity of demand to expected utility of contract return, .
Intuitively, there is more intercohort risk sharing when investors are more risk
averse: when p; is higher, 8;,(s) is lower and B; ;(s) is higher for t >s. In
words, shocks to current asset returns are better shared across investor cohorts
when investors are more risk averse. More importantly, there is more intercohort
risk sharing when investor demand is less elastic. When demand is inelastic
(¢ ==0), asset risk is perfectly shared between the current and future cohorts:
Bj,s(s)=p;:(s) for all t >s. When demand is elastic (& > 0), more asset risk is
borne by the contemporaneous cohort: 8; ;(s) > 8, ;(s) for ¢ >s. In this case,
the asset risk is imperfectly shared across investor cohorts.

The intuition is that when demand is elastic, future investor cohorts behave
opportunistically by investing more (less) when reserves are higher (lower).
For instance, when the asset return is high, the intermediary would like to share
in gains with future investor cohorts by hoarding part of the return as reserves.
When demand is elastic, however, future investors flow in, diluting reserves
and undoing the sharing of gains. Conversely, when the asset return is low,
the intermediary would like to share in losses with future investor cohorts by
tapping reserves and replenishing them in future periods. In this case, future
investors flow out, preventing the intermediary from replenishing reserves and
undoing the sharing of losses. In the limit when demand is perfectly elastic
(a2 00), intercohort risk sharing unravels completely: 8; ;(s)=1and 8; ,(s)=0
forz>s.

Our next result shows that the contract return depends on past asset returns,
xjs for s <t, only through the impact of past asset returns on the reserve
ratio. R; ;- denotes the amount of reserves at the end of period 7 just before
distribution to investors. This amount is equal to beginning-of-period reserves
plus asset income:

Rij-=Rj1+x;,(Vj—1+R;,1). (15)

The next proposition states that the reserve ratio to total account value,
Rj.-=R;,-/Vj:1,1s asufficient statistics for how the history of past asset
returns determines the current contract return.
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Proposition 2. Contract return of intermediary j in period ¢ is

~ 1-¢ «
Vig=(1=@)r+ L+r a+1—%(-xj,t_r)
1-9¢)r B
"'(—l_i (Rj——r)+u;(x,—r)+v; A, (16)

where p; >0 is a constant independent of o, 1 ; <0 goes to zero when o goes
to zero or infinity, X, is a weighted average of x; ; over k=1,...,J, v; >0 goes
to zero when o goes to infinity, and A&;, is a demand shock. Closed-form
expressions for these variables are in Internet Appendix A.1.

Proposition 2 shows how the share of asset risk borne by current investors
depends on the elasticity of demand. When demand is inelastic (o ~0), the
coefficient in front of x;; in (16) is equal to zero. The contract return then does
not depend on the current asset return beyond its effect on the reserve ratio; that
is, asset risk is perfectly shared across investor cohorts. When demand is elastic
(a > 0), the coefficient in front of x; ; is strictly positive. The intermediary then
shifts more asset risk to the current cohort. In this case, the contract return
depends on the current asset return above and beyond its effect on the end-
of-period reserve ratio; that is, asset risk is imperfectly shared across investor
cohorts.

An implication of Proposition 2 is that the reserve ratio R ; ;- is a sufficient
statistic for the history of shocks. All that matters for setting the contract return
is the intermediary’s current reserve ratio, not the path leading to that ratio.
Indeed, in (16), the contract return does not depend on past shocks beyond
their effect on the reserve ratio. The sensitivity of the contract return to the
reserve ratio results from the following tradeoff faced by the intermediary. On
the one hand, paying out a larger fraction of reserves to current investors leads
to higher demand and thus higher profit in the current period. On the other
hand, tapping reserves today implies paying lower returns to future investors,
lowering future demand and hence future profit. The optimal choice is to pay
out in the current period a fraction of reserves equal to the weight of current
investors in intertemporal profit, equal to *-, a fraction 1 —¢ of which accrues
to investors.

Proposition 2 also implies an intermediary’s contract return depends
negatively on other intermediaries’ asset returns, because u; <0. Intuitively,
when other intermediaries have high asset returns they increase contract returns
both in the current period and in future periods, which reduces intermediary j’s
future demand, but not its current-period demand, which is realized before asset
returns. Intermediary j’s optimal response is then to increase future contract
returns by lowering the current contract return so as to avoid losing too large
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future market shares.?! This effect vanishes when demand is perfectly inelastic
(¢ ~=0), because intermediary j then has no incentive to react; and it vanishes
when demand is infinitely elastic (o >~ 00), because other intermediaries then
do not change the future contract return in response to asset return shocks.
Finally, the contract return depends on the demand shock A&; ; realized at the
end of the period. Intuitively, the intermediary has incentives to lean against a
negative shock to future demand, by lowering the contract return in the current
period and increasing reserves to promise higher returns in the future.

3.3 Contracts complete markets

Proposition 2 implies that contracts complete markets in the sense that the
contract return cannot be replicated using existing market instruments. More
precisely, the risk profile of the contract can be replicated but only at a higher
price than with other market instruments. A first, mundane reason the risk profile
of the contract may not be replicated is because the contract return (16) includes
an error term that depends on the realized demand shock, which may not be
tradable. Let us exclude this reason by focusing on the case without demand
shocks, that is, A&; ;=0. In this case, the following proposition shows that the
risk profile of contract j can be replicated by positions in (i) the assets held
by insurer j, generating the return x; ;; (ii) a weighted portfolio of assets held
by all insurers, generating the return X,; and (iii) the risk-free asset, generating
the return ry <r. This portfolio replicates the risk profile of the contract in the
sense that its return is equal to the contract return up to a constant. This constant
is, however, nonzero.

Proposition 3. In the absence of demand shocks, the contract return is equal
to the return on a portfolio containing the assets held by insurers and the risk-free
asset plus a constant equal to

a+,0j
1=(1=¢)———uj |r=rp)+(1=P)rRj -1 —¢r, (17)
a+=-p;
where R;;_1=R;;_1/Vj,,—1 is the beginning-of-period reserve ratio.

The first term in (17) is positive and proportional to the risk premium on
the assets held by insurers, r —r ¢ > 0. It reflects the fact that the contract earns
the risk premium without bearing all the associated risk (and almost none of
it when « >~ 0), because some of this risk is diversified across investor cohorts.
Therefore, the portfolio with the same risk exposure as the contract has a lower
risk exposure than the insurer’s asset portfolio and thus earns a lower risk
premium than the contract. Correspondingly, the term in large brackets which

This best-response reflects the strategic complementarity property of logit demand, that is, the property whereby
contract return best-response functions are increasing in other intermediaries’ contract returns.
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multiplies the risk premium in (17) is positive and equal to the difference
between the risk exposure of the insurer’s portfolio and that of the contract. The
second term is proportional to the reserve ratio and arises from the predictable
distribution of reserves in the contract return. The third term is negative and
equal to the fees.

When reserves are equal to their unconditional mean (normalized to zero) and
fees are not too high, Proposition 3 implies that the contract strictly dominates
the portfolio replicating the risk profile of the contract. The contract reaches
a point beyond the efficient frontier based on market instruments, because
the contract shares asset risk with future cohorts of investors who do not
yet participate in the market. By contrast, intercohort risk sharing cannot
be achieved using market instruments. In this sense, the contract completes
financial markets.

Proposition 3 could imply that there exists an arbitrage opportunity consisting
in buying the contract and shorting the replicating portfolio. We analyze this
possibility in more depth in Section 5.4 and show that, in practice, arbitrage
is made unprofitable by the nondeductibility of interest expenses on levered
financial investments by households.

3.4 Empirical implications
We now derive two relations that can be estimated in the data to back out the
elasticity of demand, which is the key determinant of equilibrium risk sharing.
The first relation is the contract return policy. The coefficients p;, it ;, and v;
from Proposition 2 are intermediary specific because the optimal contract return
depends on the elasticity of demand, itself a function of the intermediary’s
market share due to logit demand. A closer inspection of these coefficients
(reported in Internet Appendix A.1) reveals they only depend on market shares
up to second-order terms. When market shares are not too large, equilibrium
contract returns can be approximated as follows:

Relation 1 (contract return policy). For small market shares, the period-z
contract return of intermediary j is

I-¢ « d-¢)

Vji X cste+ it
- 1+r a+¥p ! 1+r

R +&j1, (18)

where cste; is a period-specific constant, p is proportional to the coefficient of
relative-risk aversion, and Cov((x;,,R,-).&j,) 0.

Relation 1 implies the coefficients in the equilibrium contract return policy
(18) can be estimated by running a linear regression with time fixed effects
in a panel of intermediaries. Relation 1 also implies the model can be easily
rejected, because it predicts the coefficient in front of the reserve ratio should
be commensurate with the expected asset return. The coefficient in front of
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the current asset return is informative about the elasticity of demand: it varies
monotonically from zero to one as « varies from zero to infinity.
The second relation is that between flows and reserves:

Relation 2 (flow-reserves relation). Net flows to intermediary j in period ¢
are given by

log(V;j—1) = cstej+cste,_1+a(1—P)r'Rj 1+ 1, (19)

where cste; and cste,_; are intermediary-specific and period-specific
constants, respectively, R;,_; is the beginning-of-period reserve ratio, and
Cov(Rj;-1,§;:-1)<0. Moreover, lagged asset return x;,_; is a valid
instrument for R ;_;.

We know from Proposition 2 that the contract return paid at the end of period
t depends on the end-of-period reserve ratio, itself determined by the beginning-
of-period reserve ratio. Correspondingly, Relation 2 states that investor demand
depends on the reserve ratio at the beginning of the period. The sensitivity of
investor demand to the reserve ratio is equal to the product of the sensitivity of
investor demand to expected contract return, ¢, and the sensitivity of expected
contract return to the beginning-of-period reserve ratio, (1 —¢)r.

The coefficient (1 —¢)r in the flow-reserves relation can be estimated
by running a linear regression with time and intermediary fixed effects. The
ordinary least squares (OLS) estimate is unbiased if intermediary-specific
demand shocks are zero, or if they are observable to the econometrician
and can be controlled for. In the presence of unobservable demand shocks,
however, the error term is negatively correlated with reserves. Intuitively, when
the intermediary anticipates a negative demand shock, it optimally increases
reserves to increase future contract returns and lean against the demand shock,
generating a spurious negative correlation between reserves and demand. This
correlation creates a downward bias in the OLS estimate. The bias can be
corrected by instrumenting reserves using lagged asset returns. Indeed, lagged
asset returns affect reserves because a fraction of asset returns are hoarded as
reserves (relevance condition), but they are not directly correlated with demand
shocks beyond their effect on reserves (exclusion restriction).

The model considers one-period contracts such that the total account value
is equal to inflows in the current period. In practice, although euro contracts
are demandable thus conceptually similar to one-period contracts, they are
automatically renewed until investors redeem shares. Given the evidence in
Section 4 that investments in euro contracts are sticky, with an average holding
period of 12 years, an alternative specification of the model could allow
investors to hold contracts for several periods. We propose an extension of
our model in Internet Appendix D where we assume that inflows come from
new investors choosing between the euro contracts or the outside investment,
and outflows come from existing investors choosing between staying with their
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contract or leaving for the outside investment. We show that in that extension,
the equilibrium contract return can be written as a function of the current asset
return and the reserve ratio, as in (19), in which the coefficient in front of
the current asset return goes to zero when the elasticities of both inflows and
outflows to the expected utility of contract return go to zero, and the coefficient
in front of the reserve ratio is the same as in (19).

4. Demand (In)elasticity to Reserves

22

23

The key insight from the model is that the equilibrium level of intercohort risk
sharing depends on the elasticity of demand to expected returns conditional on
reserves, that is, on the value of «. Specifically, a demand that is inelastic
to reserves (a~~0) allows for perfect intercohort risk sharing, whereas a
demand that is perfectly elastic to reserves (o 2~ 00) unravels intercohort risk
sharing. The model shows that « can be identified from two moments given by
Relations 1 and 2. Guided by the results in Section 3.4, we estimate each of
these moments in turn, by running panel regressions.

4.1 Relation 1: Contract return policy

The first implication of the model is that after controlling for the current reserve
ratio, equilibrium contract returns depend positively on current asset returns
if & >0, and do not depend on current asset returns if o« >~0. We estimate
the contract return policy given by Relation 1 by running a panel regression
with year fixed effects. According to our model, insurer fixed effects are not
necessary, because the model assumes no heterogeneity in expected asset return
across insurers. Yet, our preferred specification does include insurer fixed
effects to account for such heterogeneity in the data.>> We estimate weighted
regressions using the insurer share of account value in aggregate account value
as weights.”> We calculate standard errors two-way clustered by insurer and by
year.

Table 3 reports the results. In line with the model, the coefficient for
the reserve ratio is positive and statistically significant at the 1% level, in
both specifications. In our preferred specification with insurer fixed effects
(Column 2), the point estimate implies a one-percentage-point increase in the
reserve ratio is associated with a 3.5-basis-point increase in the annual contract
return. That is, out of each additional euro of reserves, 3.5 cents are credited
to investor accounts per year. The model predicts a regression coefficient equal

In the model, including insurer fixed effects does not lead to a misspecified regression, because it only adds
regressors that are uncorrelated with the dependent variable and with the other explanatory variables. In the data,
insurer fixed effects in contract return regressions are always jointly significant at statistical levels below 1%.

We obtain similar results when we estimate nonweighted regressions (untabulated).
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Table 3
Contract return

Contract return (y j,,)

@) (@) (3 (C)) (5 6)
Reserve ratio (Rj.t— ) .026%F* .035%F* .039%F* L03FF* .032%F* .0347%*
(.0078) (.0082) (.01 (.0095) (.0068) (.0079)
Asset return (x; ;) —.017 —.018**  —019** —.015* —.016®*  —.017*
(.011) (.0079) (.0085) (.0075) (.0066) (.0097)
Reserve ratio x High insurer capital —.0045
(.008)
Reserve ratio x Large insurer 011
(.0075)
Reserve ratio x Low reserves .017
(.017)
Reserve ratio x Crisis L015%**
(.0047)
Asset return x High insurer capital .0025
(.0068)
Asset return x Large insurer —.011
(.0076)
Asset return x Low reserves —.011
(.0098)
Asset return x Crisis —.011
(.013)
High insurer capital —.00049
(.0016)
Large insurer —.0025
(.0016)
Low reserves —.0019
(.0019)
Year FE v v v v v v
Insurer FE v v v v v
R? 69 81 81 81 81 81
Observations 978 978 978 978 978 978

Panel regressions at the insurer-year level for 76 insurers over 2000-2015. Contract return is the annual
before-fees contract return paid at the end of year ¢. Reserve ratio is total reserves at the end of year 7 just before
annual distribution normalized by total account value. Asset return is asset return in year r. High insurer capital
is dummy equal to one if the insurer’s capital ratio is above the sample median. Large insurer is a dummy equal
to one if the insurer is in the top quartile of insurer size as measured by total account value. Low reserves is a
dummy equal to one if the insurer has a reserve ratio in the bottom quartile of the sample distribution. Crisis
is a dummy equal to one in crisis years 2008 (global financial crisis) and 2011-2012 (European sovereign
debt crisis). All regressions are weighted by the insurer share in aggregate account value in the current year.
Standard errors two-way clustered by insurer and year are reported in parentheses. *p < .1;**p < .05; ¥**p < .01.

to (1—¢)r/(1+r). Thus, the estimate of 0.035 and ¢=0.15 imply r=4.3%,
consistent with the average asset return observed during the period.?*

The key result is that the coefficient for the asset return is a precisely
estimated zero. The coefficient is not statistically different from zero with a
95% confidence interval between negative 0.04 and positive 0.01 when insurer
fixed effects are not included (Column 1). In other words, the contract return
does not depend on the contemporaneous asset return beyond its effect on the

The sample average asset return is 4.9% (Table 1), perhaps because realized asset returns have been above
expected returns during the sample period. As discussed in Section 1.2, the reserve ratio rose by 25 bps per
year, while positive net flows should have diluted reserves at a rate of 25 bps per year. Therefore, insurers have
retained approximately 50 bps of realized asset returns in reserves, consistent with an ex ante expected return of
approximately 4.4%.
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reserve ratio, which is consistent with o ~0. The coefficient is also a precisely
estimated zero when insurer fixed effects are included (Column 2). Note that
although insurer fixed effects reduce the standard deviation of the point estimate
and make it statistically significant, the economic magnitude is essentially zero:
the coefficient is negative 0.018, which is an order of magnitude smaller than the
value of the coefficient implied by the model when demand is infinitely elastic,
equal to % ~0.81 using ¢=0.15 and r=4.3%. Note also that the negative
point estimate does not imply that the pass-through of asset return to contract
return is negative. Indeed, the asset return enters positively into the reserve
ratio (see Equation (15)), so the pass-through of asset return to contract return
is given by the sum of the coefficient for the reserve ratio and the coefficient
for the asset return. This pass-through is positive (equal to 0.017 with p-value
of 0.15). The negative coefficient for asset return means that the contract return
in year ¢ is less sensitive to the asset return in year ¢ than to asset return in years
s <t. This can be explained by two institutional factors. First, when investors
withdraw money, say in July of year ¢, they are usually credited a pro rata
contract return over January to June based on the contract return in year ¢ — 1.
In this case, the contract return in year ¢ does not depend on the asset return
in year ¢. Second, insurers sometimes offer new clients a guaranteed return in
the first year of the contract for marketing purposes. In this case, the first-year
contract return does not depend on the contemporaneous asset return. These
two factors imply that contract returns associated with inflows and outflows do
not depend on the current year asset return, which weakens the relation between
the contract return and the contemporaneous asset return.

In conclusion, the empirical contract return policy exhibits sizeable
intercohort risk sharing, consistent with o >~0.

In columns 3 to 6 of Table 3, we analyze whether the contract return policy
varies across insurers and according to market conditions. We regress the
contract return on the reserve ratio and the contemporaneous asset return,
which we both also interact with several insurer characteristics. In column 3,
we interact with a dummy equal to one if the insurer’s capital ratio is above
the sample median. In column 4, we interact with a dummy equal to one if the
insurer is in the top quartile of insurer size as measured by total account value.
We find that neither the capital ratio nor the insurer size is associated with
significantly different contract return policies. In column 5, we interact with a
dummy equal to one if the insurer has a reserve ratio in the bottom quartile of
the sample distribution, and in column 6, we interact with a dummy equal to
one in crisis years 2008 (Global Financial Crisis) and 2011-2012 (European
sovereign debt crisis). We find that the sensitivity of contract return to reserves
is higher in crisis years, that is, insurers with low reserves cut contract return
relatively more during crises than outside crises. However, the extent of return
smoothing, captured by the coefficient for the current asset return, does not
increase in crisis time. The pass-through from asset return to contract return
remains precisely estimated and very close to zero in all cases.
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4.2 Are reserves really pooled across investor cohorts?

Intercohort risk sharing arises to the extent that reserves are pooled across
investor cohorts. As discussed in Section 1.1, in principle, insurers could
undo reserves pooling by closing existing contracts to new subscriptions when
reserves are high, and creating a new vintage of contracts to price in the high
level of reserves for new investors. Pricing of reserves could be done by creating
new contracts with (a) higher entry fees, (b) higher management fees, (c) lower
before-fees contracts return, or any combination of (a), (b), and (c), when
reserves are higher.

We use two different sources of contract-level information to test whether
insurers follow any of the (a), (b), or (c) strategies. First, we use data on
fees to test for (a) and (b). The data provide a snapshot of contracts with
positive outstanding account value in 2017 (even if the contract is no longer
commercialized in 2017). The fee structure is fixed at the subscription of the
contract and written in the contract prospectus. Because, for a given contract,
some investors hold their contract for many years, it is sufficient to have a
snapshot of outstanding contracts in 2017 to retrieve the fee structure of all
contracts sold throughout the sample period 2000-2015. The data also report
the time period during which each contract was open to new subscriptions.
For each insurer j and each year r over 2000-2015, we calculate the average
entry fee and average management fee across all contracts offered by insurer
J and open to new subscriptions in year . We regress the average fee on the
insurer’s beginning-of-year reserve ratio. If insurers price reserves into fees,
the coefficient for the reserve ratio would be positive. Results in Table 4 show
that insurers neither follow strategy (a) by adjusting entry fees (Column 1) to
the level of reserves nor strategy (b) by adjusting management fees (Column 2)
to the level of reserves.

Second, we use data on net-of-(management-)fees returns at the contract
level to test whether insurers do a combination of (b) and (c). The data are
from a survey conducted by the insurance supervisor since 2011. Each survey
is a snapshot of contracts with positive outstanding contract value (even if
the contract is no longer commercialized in the survey year) with information
on the net-of-fees contract return. The data report the first year in which the
contract was commercialized. For each contract ¢ of vintage s, we retrieve the
insurer’s reserve ratio at the beginning of year s from the regulatory filings.
We obtain a panel at the contract (¢) x vintage year (s) X return year (¢) level,
where vintage years run throughout the sample period 2000-2015 and return
years are from 2011 to 2015. We regress the net-of-fees return (of contract ¢ in
year ¢) on the reserve ratio in the contracts’ vintage year (at beginning of year
s) with insurer and vintage year fixed effects.? If insurers followed strategies

Because we stack the five snapshots of return data, we interact the fixed effects with return-year dummies.
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Table 4
Fees
Entry fee Management fee Net-of-fee
contract return
(€)) (@) 3
Lagged reserves —.016 .000054 —.005
(011) (.0011) (.0056)
Year FE v v v
Insurer FE v v v
R? 92 95 72
Observations 578 578 13,659

Columns 1 and 2 present panel regressions at the insurer-year level for 48 insurers over 2000-2015. The
dependent variable in column 1 is Entry fee constructed as the average entry fee (frond-end load) of contracts
sold by the insurer j in year r. The dependent variable in column 2 is Management fee constructed as the
average management fee of contracts sold by insurer j in year ¢. The independent variable in columns 1 and 2
is Lagged reserves constructed as insurer j’s reserves at beginning-of-year  normalized by total account value.
The regressions in columns 1 and 2 include insurer and year fixed effects and are weighted by the insurer share
in aggregate account value in the current year. Column 3 presents a panel regression at the contract-vintage
year-return year level for about 2,700 outstanding contracts per year from 56 insurers over 2011-2015. The
dependent variable in column 3 is contract return in year ¢ of contract ¢ of vintage year s offered by insurer j.
The independent variable in column 3 is Lagged reserves constructed as insurer j’s reserves at beginning-of-year
s normalized by total account value. The regression in column 3 includes insurer-return year and vintage
year-return year fixed effects and are weighted by the contract share in aggregate account value in the current
return year. Standard errors two-way clustered by insurer and year (return year for column 3) are reported in
parentheses. *p < .1; **p < .05; ***p < .01.

(b) or (¢) of pricing reserves by adjusting future net-of-fees contract returns, the
coefficient for the reserve ratio in the contract’s vintage year would be negative.
Column 3 of Table 4 shows this is not the case. Insurers do not discriminate
across investor cohorts based on the level of reserves when investors enter into
the contract.

In conclusion, reserves are indeed pooled across investor cohorts.

4.3 Relation 2: Flow-reserves relation

The second implication of the model is that investor flows depend positively on
the reserve ratio if « > 0, whereas flows are insensitive to reserves if o =0. We
estimate the flow-reserves relations by running panel regressions with insurer
and year fixed effects. We use several specifications, reported in panel A of
Table 5. In column 1, the dependent variable is the net flow in rate (inflow
minus outflow as a fraction of total account value). Columns 2 to 4 decompose
the three components of net flows: (plus) inflows, that is, premiums, which
come either from investors already holding a contract and adding money to
their account or from new investors; (minus) redemptions, which are voluntary
outflows; and (minus) payments at contract termination, which are involuntary
outflows (because of investor death).

The dependent variable in the flow-reserves relation given by Equation (19)
is the log level of the invested amount, rather than the investment flow as in
column 1. The reason being that investments are assumed to be one-period in
the model, so the stock and flow of investment are identical. In Appendix D,
we work out an extension of the model in which contracts are held for several
periods, leading to two flow-reserves relations, one for inflows and one for
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Table 5
Investor flows

A. OLS regressions

Net flows Inflows Redemptions Termination log(Inflows)
(€Y} (@) 3 (C)) (5)
Lagged reserves .035 .031 —.013 .012 -1.2
(.039) (.038) (.019) (.0098) (1.1)
Year FE v v v v v
Insurer FE v v v v v
R? 63 73 74 79 91
Observations 978 978 978 978 978
B. 1V regressions
Net flows Inflows Redemptions Termination Log(Inflows)
()] (@) 3 (4) 5)
Lagged reserves 12 .069 —.041 —.008 31
(.086) (.074) (.037) (.013) 1)
Year FE v v v v v
Insurer FE v v v v v
R? 65 76 77 8 92
Observations 910 910 910 910 910

Panel regressions at the insurer-year level for 76 insurers over 2000-2015. In column 1, the dependent variable
is net flow (total premiums minus voluntary redemptions minus involuntary redemptions at contract termination,
i.e. the investor’s death) normalized by total account value. In columns 2 to 4, the dependent variable is each
of these three components of the net flow rate. In column 5, the dependent variable is the log inflow amount.
Lagged reserves is the beginning-of-year level of reserves normalized by total account value. Panel A shows
OLS regressions. Panel B shows IV regressions in which the insurer’s beginning-of-year reserve ratio is
instrumented using the insurer’s asset return in the previous year. IV regressions include as control variables
the shares of the insurer’s asset portfolio in five broad asset classes at the beginning of the previous year. Each
insurer’s first year of observation is dropped from the IV regressions because these regressions use lagged
variables. All regressions are weighted by the insurer share in aggregate account value in the current year.
Standard errors two-way clustered by insurer and year are reported in parentheses. *p < .1;**p < .05; ***p < .01.

outflows. The inflow-reserves relation has the log inflow amount on the left-
hand side and is governed by a parameter controlling the elasticity of inflows.
In accordance with this model extension, the specification in column 5 uses
the log inflow amount as the dependent variable. The outflow-reserves relation
has the outflow rate on the left-hand side and is governed by the elasticity of
outflows. Therefore, the specification in column 3 is already consistent with
the model extension.

In all specifications, the sensitivity of flows to the beginning-of-year
reserve ratio is not significantly different from zero. More importantly, it
is economically small. In column 1, we can reject at the 5% level that
the regression coefficient of net flow on the reserve ratio is larger than
0.12. Combined with our estimate of the predictive power of reserves
for future contract returns, a coefficient of 0.12 implies a semielasticity
of the net flow rate to expected returns conditional on reserves of 4.6;
that is, a change in reserves implying a one-percentage-point increase in
future contract returns increases net flow by 4.6 percentage points.”® In

The semielasticity is computed as the regression coefficient of net flows on reserves rejected at 5% (0.12 in
column 1 of panel A of Table 5) divided by the regression coefficient of the contract return on reserves (0.026 in
column 1 of Table 3).
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comparison, Drechsler, Savov, and Schnabl (2017) estimate the semielasticity
of bank deposits net flows to the spread between interest rates on deposits and
the Fed Fund rate to be 5.3. In the specification in log inflow in column 5,
we reject at 5% a semielasticity of inflow to expected returns conditional on
reserves of 0.4; that is, a change in reserves implying a one-percentage-point
increase in future contract returns increases inflows by 40%.2” This estimate
can be compared to estimates of log specifications in the literature. Hortagsu
and Syverson (2004) estimate a semielasticity of the purchase of S&P 500 index
funds to the fee of seven, and Koijen and Yogo (2022) estimate a semielasticity
of the purchase of variable annuities to the fee of 16. We conjecture that demand
for euro contracts is inelastic to reserves whereas the demand for deposits is
elastic to deposit spreads and the demand for other investment products is elastic
to fees, because the predictive power of reserves for contract returns is not easily
comprehensible whereas deposit spreads and fees are readily observable and
easy to understand. We provide evidence consistent with this interpretation at
the end of this section and in Section 5.3.

Relation 2 implies that the OLS estimate of the flow-reserves relation
has a downward bias if insurers face flow shocks anticipated by insurers
but unobservable to the econometrician.”® The bias caused by unobservable
demand shocks can be corrected by instrumenting reserves using past asset
returns. The instrument satisfies the exclusion restriction under the model
assumption that past asset return is uncorrelated with current unobservable
demand shocks. In practice, anticipation of demand shocks can lead insurers
to adjust their asset allocation so that past risk premiums, and hence past asset
returns, can be correlated with current demand shocks. To control for this
potential threat to the validity of the instrument, we control for insurers’ asset
portfolio weights reported in the regulatory data (bonds, equities, real estate,
loans, and other assets).?%-30 The first stage, reported in Internet Appendix
Table E.1, is strongly significant: the #-stat is equal to 5.8 with standard errors
two-way clustered by insurer and year. Panel B of Table 5 presents the second-
stage regressions. The IV estimates of the flow-reserves sensitivity are slightly
larger than the OLS estimates, but they remain statistically insignificant, and

The semielasticity is computed as the regression coefficient of log inflows on reserves rejected at 5% (1.1 in
column 5 of panel A of Table 5) divided by the regression coefficient of the contract return on reserves (0.026 in
column 1 of Table 3, multiplied by 100 to convert the return into percentage points).

To account for observable demand shocks, in Internet Appendix Table E.2, we estimate the flow regressions
controlling for potential determinants of demand, and find that the coefficient for reserves remains small and
insignificant.

We can further lag the asset return to further mitigate this identification concern. Internet Appendix Table E.3
shows that results are similar when we use the 2-year-lagged asset return as the instrument.

Another threat to the exclusion restriction could be that past asset returns are correlated with fees, because fees
likely affect the demand for new contracts. In Internet Appendix Table E.1, we show that this is not the case:
neither entry fees nor management fees is predicted by past asset return.
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the economic magnitudes are small. To conclude, the empirical flow-reserves
relationship rejects a > 0 and is instead consistent with o ~0.3!

Are there insurer characteristics that matter for investor demand? In Internet
Appendix Table E.2, we regress the flow measures on lagged reserves and other
insurer-level characteristics. We find that bank-insurance conglomerates enjoy
a level of inflow 4.5 times larger than stand-alone insurers as well as a lower
outflow rate. This suggests that the distribution channel is a key determinant
of investor demand, with bank-insurance conglomerates benefiting from the
advantage of tunneling depositors toward the contracts of their subsidiaries.
Interestingly, we don’t find net flows to be correlated with insurers’ capital
ratio.

The fact that flows are inelastic to reserves even though reserves predict
returns does not imply that investors do not care about returns. Investors
may fail to predict returns using reserves (see Section 5.3) but react to more
transparent sources of predictability. In Internet E.4, we study how flows to
euro contracts react to changes in the interest rate on a regulated savings
product which competes with euro contracts. This product’s regulated interest
rate is readily observable and regularly discussed in the press, so that even
unsophisticated investors are aware of its evolution. Consistent with flows
reacting to more salient sources of predictability, we find that flows to euro
contracts decrease when the regulated interest rate on the competing savings
product increases. Also consistent with flows reacting to more salient events,
we show in Internet Appendix Table E.5 that the flow-reserves relation becomes
statistically significant during periods of financial crisis (Global Financial Crisis
of 2008 and European sovereign debt crisis over 2011-2012). The economic
magnitude remains small, however.

4.4 Reserves predict contract returns

Because reserves are not diluted by investor flows (as shown in the previous
section) and are owed to investors (by regulation), the reserve ratio should
predict future contract returns. We verify this prediction in Table 6. In column 1,
we regress the contract return paid at the end of year 7 on the reserve ratio at
the beginning of year ¢ in the insurer-year panel with year fixed effects.>* The
coefficient for the beginning-of-year reserve ratio is positive and statistically
significant at the 1% level. Therefore, the reserve ratio predicts the expected

The IV analysis also allows us to distinguish investor strategies based on reserves from contract return chasing. In
the OLS flow-reserves regressions, current reserves are correlated with past reserves because reserves are sticky,
and past reserves are correlated with past contract return (see Equation (18) and Table 3). Therefore, the impact
of current reserves on flows could be confounded by the impact of the past contract return. The IV flow-reserves
regressions overcome this issue because the instrument (past asset return) is correlated with reserves (because
shocks to asset returns are absorbed by reserves) but not with past contract return when o >0 (see Equation (18)
and Table 3). We thank an anonymous referee for raising this issue.

We do not include insurer fixed effects because we are running a predictive regression, which would estimate
insurer fixed effects on the entire sample period. In the (untabulated) regression with insurer fixed effects, the
coefficient for the lagged reserve ratio is 0.03 and significant at the 1% level.
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Table 6
Contract return predictability

Contract return in year

t t+1 t+2 t+3 t+4
(9] (2) (3) (4) )
Reserves at beginning of year ¢ 025+ .024%%* .023** .019%* .019*
(.0074) (.0073) (.0078) (.0087) (.0088)
Year FE v v v v v
R? 69 1 62 61 57
Observations 978 859 783 717 645

Panel regressions at the insurer-year level for 76 insurers over 2000-2015. Contract return is the annual
before-fees contract return the end of years 7 (column 1), 7+1 (column 2), ..., t+4 (column 5). Reserves at
beginning of year t is total reserves at the beginning-of-year r normalized by total account value. All regressions
include year fixed effects and are weighted by the insurer share in aggregate account value in the current
year. Standard errors two-way clustered by insurer and year are reported in parentheses. *p <.1; **p < .05;
#kp < 01,

.06

.02
T T T T T T
2000 2003 2006 2009 2012 2015

High-reserves contracts  ————- Low-reserves contracts

Figure 3

High-reserves contracts outperform low-reserves contracts

The figure illustrates the return of the portfolio of contracts with the above-median reserve ratio (solid blue) is
always higher than the return of the portfolio of contracts with the below-median reserve ratio (dashed red).

contract return at a 1-year horizon: contracts with higher reserves have higher
expected returns.

Higher reserves predict a higher expected contract return because reserves are
eventually distributed to investors, not because higher reserves are associated
with higher risk. To show this, we consider a zero-cost portfolio that is invested
long in contracts with high reserves and short in contracts with low reserves.
At the beginning of each year, we rank insurers on the [0, 1] interval based
on the beginning-of-year reserve ratio, and use portfolio weights proportional
to insurers’ rank minus one-half. Figure 3 shows that the long leg of the
portfolio outperforms the short leg in every year of the sample period. Table 7
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Table 7
High-reserves contracts are not riskier
Low-reserves High-reserves High minus Low
contracts contracts portfolio
1) ()] 3)
Mean return .039 .042 .0034%**
(.0029) (.0030) (.00035)
Alpha .039 .042 .0034%**
(.0027) (.0029) (.00032)
Beta —.012 —.0092 .0027*
(.0070) (.0075) (.00092)
SD return .0051 .0042 —.00091
(.00034) (.00049) (.00069)

Performance of a portfolio long contracts with beginning-of-year reserves above median and short contracts
with beginning-of-year reserves below median with portfolio weights proportional to the contract rank rescaled
between minus one and one times the contract’s total account value. Column 1 shows the performance of the
short leg, column 2 of the long leg, and column 3 the performance of the long-short portfolio. Mean return is
the average return of the leg/portfolio. Alpha and Beta are the intercept and loading on the market in the market
model. SD return is the time-series average of the cross-sectional standard deviation of contract return within the
leg in columns 1 and 2, and it is the difference between that of the long leg and that of the short leg in column 3.
Newey-West standard errors with two lags are reported in parentheses. In column 3, *p <.1; **p <.05;
#EEp < .01,

shows performance statistics for each leg of the portfolio and for the long-short
portfolio. The first row confirms that higher reserves predict higher expected
returns: Average returns are 34 bps per year higher for high-reserves contracts
than for low-reserves contracts.

The second and third rows of Table 7 report the estimates of a market model.
The difference in market beta between high-reserves and low-reserves contracts
is a precisely estimated zero (a difference in beta larger than 0.01 is rejected
at the 1% level), implying alpha is 34-bps higher for high-reserves contracts
than for low-reserves contracts, on average.’® Therefore, the predictability of
expected contract returns does not reflect a compensation for market risk.

The fourth row reports the cross-sectional standard deviations of high- and
low-reserves contracts returns, averaged over time. We find the difference
between the two groups is a precisely estimated zero. Therefore, the
predictability of expected contract returns does not reflect a compensation for
idiosyncratic risk either.

Reserves should predict contract returns not only at 1 year but also at longer
horizons because reserves are only progressively distributed to investors. We
show in Internet Appendix F that the predictive power of reserves for future
contract returns should decay at the same rate as the one at which the reserve
ratio mean reverts. The reserve ratio mean reverts for two reasons. First, reserves
are progressively credited to investors’ accounts (at a rate of 3% per year in
columns 1 and 2 of Table 3). Second, inflows dilute reserves at a rate equal

The large ¢-stat of the alpha estimate reflects the fact that the predictive power of reserves is almost mechanical.
Because reserves must eventually be distributed to investors, they must predict future contract returns. The null
hypothesis rejected by the nonzero alpha is merely that insurers do not divert reserves.

5422

€20z 1snBNy Gz uo Jesn suied D3H DSIT 2dnoi9 Aq 225299/ 8ES/Z L /SE/BIOIME/SH/WO"dNO"olWSpEDE//:SARY WO PAPEOjUMOQ


https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhac054#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhac054#supplementary-data

34

35

Can Risk Be Shared across Investor Cohorts?

to the unconditional net flow rate (2.4% per year in Table 1) plus a term that
depends on the sensitivity of flows to reserves (equal to zero in Table 5). Thus,
the reserve ratio should mean revert at a rate of 5.4% per year. The predictive
power of reserves for future contract returns should also decay at a rate of 5.4%

per year.
In columns 2 to 5 of Table 6, we check that the data are consistent with the
above calculation. We regress contract return in years ¢, t+1, ..., t+4, on the

reserve ratio at the beginning of year ¢. The regression coefficient for the initial
reserve ratio decays at a rate of about 7%, which is close to the predicted rate of
5.4%. In conclusion, reserves predict future contract returns over many years.

4.5 Where does cross-sectional variation in reserves come from?

Our analysis of the contract return policy and flow-reserves relation relies on
variation in reserves across insurers. Where does cross-sectional variation in
reserves come from in the first place? To answer this question, we start from the
accounting identity (4) that determines the evolution of reserves over time, and
we estimate the contribution of each variable to the cross-sectional variance
in the reserve ratio. Three terms must be added to the model equation (4)
for this accounting identity to hold exactly in practice. First, when insurer
J reinsures euro contract liabilities, net income from reinsurance Reins;, is
added to the asset return in year ¢ and at least 85% of it must be paid to investors
either immediately as contract return or later via reserves.>* Second, technical
income, which is equal to fees collected from investors minus operating costs,
must be shared with investors either immediately as contract return or later via
reserves.> Therefore, net income from reinsurance and fees must be added to,
and operating costs must be subtracted from, the left-hand side of (4) for this
accounting identity to hold exactly empirically. Rearranging terms, the reserve
ratio evolves according to

R; R, Ri,
_Jﬁz[Lﬂj,t AT B
Vie LV Vi

_( I, +C0stsj,, Feesj,,>+Reinsj,,] Vi1

Vj,t—l ij;_l B Vj,r—l Vj,t—l Vj,t

(20)

The regulatory filings do not allow us to decompose the insurer profit plus
operating costs minus fees (the second big parenthesis in (20)) into its three
components, so we use a variable that encompasses the three components.
Iterating equation (20), the reserve ratio in year ¢ writes as a function of the
reserve ratio in year t —h, with 2> 1, and the sequence from year t —h+1 to

Insurers rarely reinsure their liabilities. The absolute value of net income from reinsurance represents 5 bps of
account value on average.

At least 90% of the technical income must be paid to investors when the technical income is positive, and 100%
when it is negative. See Internet Appendix B.2.
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Table 8
Asset return explains most of the cross-sectional variation in reserves

Share of variance of h-year change in reserve ratio explained by:

Asset Contract Insurer profit, Account value Covariance
return return costs, fees Reinsurance growth terms
(€3} 2 3 (C)) (%) (6)
h=1 year 0.88 <0.01 0.07 <0.01 0.02 0.02
h=2 years 0.81 0.01 0.07 0.01 0.03 0.07
h=3 years 0.79 0.01 0.08 0.02 0.04 0.06
h=4 years 0.77 0.01 0.12 0.01 0.04 0.05
h=5 years 0.72 <0.01 0.14 0.01 0.04 0.08
h=6 years 0.69 <0.01 0.17 <0.01 0.04 0.09
h=T7 years 0.64 <0.01 0.21 <0.01 0.05 0.1

Each cell in columns 1 to 5 corresponds to a different regression at the insurer-year level. The statistics
reported in each cell is the R2 of the regression of the h-year change in the reserve ratio on the variable
indicated in the column heading, run after partialling out the initial reserve ratio, year fixed effects and
the initial ratio interacted with year fixed effects, divided by the RZ of the same regression but including
the five explanatory variables. The statistics in column 6 are calculated as one minus the sum of the other columns.

year ¢t of five variables: asset return; contract return; insurer profit, costs, and
fees; reinsurance; and asset growth. To estimate the contribution of each of
these five variables to the cross-sectional variance of reserves, we first partial
out initial reserves from the reserve ratio and from the six explanatory variables.
Specifically, we compute the residuals of insurer-year-level panel regressions
of the reserve ratio on the h-year lagged reserve ratio, year fixed effects, and
the interaction between the lagged reserve ratio and year fixed effects. We do
the same for each one of the explanatory variables. Then, for each explanatory
variable, we regress the residual of the current reserve ratio on the residual of
the explanatory variable and its lags.

The R?s of these regressions measure the contribution of each explanatory
variable to the cross-sectional variance of the reserve ratio. To adjust for the
nonlinearity of the accounting identity and the small data discrepancies, we
report normalized R%s in columns 1 to 5 of Table 8.3 One minus the sum of
the normalized R’s reflects the contribution of covariance terms to the total
variance. This contribution is reported in the rightmost column of Table 8.

At horizon h=1 year, the asset return explains 88% of the cross-sectional
variance in reserves while the other variables explain little. This result
complements the pattern in Figure 2 showing that the asset return explains
virtually all of the time-series variation in reserves. At longer horizon, the
asset return still explains most of the cross-sectional variation in reserves.
The contribution of insurer profit, costs, and fees increases at longer horizons

Each normalized R? is equal to the original R? of the regressions using each one of the explanatory variables
divided by the R? of the regression using all the explanatory variables. The normalized RZs measure the fraction
of the variance of the reserve ratio explained by each explanatory variable. The R? from the regression including
all five explanatory variables is less than one because the regression specification is additive whereas account
value growth enters multiplicatively in the accounting identity (20), and because of small discrepancies in the data
during acquisitions and divestures. The five normalized R%s would sum to one only if the explanatory variables
were uncorrelated with each other.
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because these variables are persistent and hence their effect builds up over time.
The contribution of the contract return is small at every horizon, accounting
for less than 1% of the cross-sectional variance in reserves, which reflects that
there is little variation in the contract return policy across insurers.

In Internet Appendix Table G.2, we decompose the asset return x;, into
a systematic risk component and an idiosyncratic risk component. This
decomposition brings the additional result that heterogeneity in systematic risk
exposure only explains a small part of cross-sectional variation in reserves, so
that the heterogeneity in asset return is mainly because of idiosyncratic risk.
This finding is consistent with anecdotal evidence on the heterogeneity in asset
holdings across insurers. For instance, the European sovereign debt crisis of
2011-2012 has shed light on the differential exposure to sovereign bond issuing
countries across insurers.

5. Why Is Demand Inelastic to Reserves?

5.1 Switching costs

We test whether the low elasticity of flows to reserves is explained by switching
costs created by the tax treatment of euro contracts. As described in Section 1.1,
contract returns are taxed upon withdrawal at a rate that depends on the age of
the contract at the time of withdrawal: the tax rate is 35% if contract age is less
than 4 years, 15% between 4 and 8 years, and 7.5% after 8 years.37 Therefore,
an investor owning a contract and willing to increase her investment in euro
contracts faces a tax incentive to add cash to her existing contract rather than
buying a new contract.

In contrast to other investors, new investors are not subject to the tax-induced
switching cost. Therefore, if the low elasticity of flows to reserves is explained
by switching costs, purchases of new contracts should react to reserves. Instead,
if the low elasticity is explained by something else, then purchases of new
contracts should be as inelastic to reserves as total flows are. We test whether
purchases of new contracts react to reserves using information on the number
of new contracts purchased from each insurer in each year. Insurers have been
required to report this information since 2006, therefore, the sample period for
this test is restricted to 2006-2015. We regress the number of new contracts
purchased divided by the number of outstanding contracts on the beginning-of-
year reserve ratio. Table 9 shows that both in our OLS and I'V estimations, new
investors’ inflows are not sensitive to the level of reserves. We conclude that
switching costs induced by taxes cannot explain the low elasticity of inflows to
reserves.

Another switching cost stems from entry fees that investors incur when they
add cash to their contract, creating a disincentive to move cash from one contract

37 See Internet Appendix H for an estimate of the tax-induced switching cost.
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Table 9
Inflows from new investors

Purchases of new contracts

OLS v

) 1
Lagged reserves .029 092

(.05) (.15)
Year FE v v
Insurer FE v v
R2 49 49
Observations 581 577

Panel regressions at the insurer-year level for 67 insurers over 20062015 Purchases of new contracts is the
number of new contracts purchased in the current year divided by the beginning-of-year outstanding number
of contracts. Lagged reserves is the beginning-of-year level of reserves normalized by total account value.
Column 1 shows the OLS regression. Column 2 shows the IV regression in which the insurer’s beginning-of-year
reserve ratio is instrumented using the insurer’s asset return in the previous year. All regressions include insurer
and year fixed effects and are weighted by the insurer share in aggregate account value in the current year.
Standard errors two-way clustered by insurer and year are reported in parentheses. *p < .1; **p < .05; ***p < .01.

to another. However, entry fees do not distort the choice of contract for newly
invested money, because entry fees are incurred regardless of the contract
chosen, and we have shown insurers do not adjust entry fees to the level of
reserves (Table 4). Therefore, entry fees cannot explain the low elasticity of
total inflow to reserves (Column 2 of Table 5) nor the low elasticity of new
investors’ inflow (Table 9).

5.2 Preferences for nonprice contract characteristics

An alternative hypothesis is that investors are inelastic to reserves because they
have heterogeneous and strong preferences for other contract characteristics,
such as risk exposures. Inconsistent with this hypothesis, we showed in
Table 7 that high- and low-reserves contracts are similar in their exposure
to both systematic and idiosyncratic risks. In addition, as we show in the
next subsection, the elasticity of demand to reserves varies systematically
with investor wealth, a proxy for financial sophistication. The hypothesis
that investors are inelastic to reserves because of preferences for certain
risk exposures would require to explain why the heterogeneity in such risk
preferences is significantly smaller among more sophisticated investors.

5.3 Investor sophistication

We test whether flows are inelastic to reserves because investors lack the
knowledge to predict contract returns using reserves. This lack of knowledge
could be due to investors simply not understanding that reserves predict
returns, or perhaps investors not being able to obtain information on the
level of reserves.®® To test that hypothesis, we study whether the flow-
reserves sensitivity varies across investors with different levels of financial

Although insurers’ annual reports contain information on the level of reserves, it often is incomplete or
consolidated at the group level.
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sophistication. We proxy for investor sophistication using the investment
amount, the idea being that financial sophistication is correlated with wealth, for
instance, if investors must incur a fixed cost to acquire the knowledge necessary
to predict returns (Lusardi and Mitchell 2014).

We construct the proxy for investor sophistication using contract-level data
collected by the insurance supervisor for the years 2011 to 2015. The data
contain information on the number of investors, the total account value, and
the net-of-fees return for every contract. We calculate the average individual
account value as the total account value divided by the number of investors.
We classify contracts into three bins according to the average account value:
less than 50,000 euros, 50,000-250,000 euros, and more than 250,000 euros.
We also construct net flows at the contract level.

We exploit cross-sectional variation in investor sophistication along two
dimensions. First, we exploit variation across insurers. Some insurers cater to
wealthier—hence more sophisticated—clienteles. Second, we exploit variation
across contracts within a given insurer. As described in Section 1.1, insurers
often offer different contracts with different minimum investment amounts that
target different clienteles. A crucial feature of the institutional framework is that
reserves are pooled across all contracts of a given insurer, so that reserves predict
returns for all contracts. Therefore, we can exploit cross-contract variation in
investor sophistication to test whether the flow-reserves sensitivity varies within
a given insurer-year. We regress net flows at the contract level on the beginning-
of-year reserve ratio interacted with dummy variables for each bin of average
account value (and on the noninteracted dummy variables).

The first specification (column 1 of Table 10) does not include insurer-year
fixed effects and thus exploits cross-insurer variation in investor sophistication.
The flow-reserves sensitivity is small and statistically insignificant for contracts
with both small and intermediate average account values (below 250,000
euros per investor). By contrast, the flow-reserves sensitivity is positive and
statistically significant at the 10% level for contracts with larger average
account value (above 250,000 euros per investor). Combined with our estimate
of the predictive power of reserves for future contract returns, the point
estimate implies a semielasticity of sophisticated net flows to expected returns
conditional on reserves of 14; that is, a change in reserves implying a one-
percentage-point increase in future contract returns increases sophisticated net
flow by 14 percentage points.>

The second specification (column 2 of Table 10) includes insurer-year fixed
effects and thus isolates cross-contract variation in investor sophistication
within insurer-years. In that case, the absolute level of the flow-reserves
sensitivity is no longer identified, because it is defined at the insurer-year

The semielasticity is computed as the regression coefficient of net flows on reserves in contracts with average
account value above 250,000 euros (0.36 in column 1 of Table 10) divided by the regression coefficient of contract
return on reserves (0.026 in column 1 of Table 3).
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Table 10
Financial sophistication

Contract-level net flows

OLS OLS v v
()} (@) (3) (C))
Lagged reserves x (Avg account value 0-50 k€) —.059 —.19
(17) (.26)
Lagged reserves x (Avg account value 50-250 k€) 014 13 .0028 32
17) (.076) (22) (21)
Lagged reserves x (Avg account value 250+ k€) .36* A1 54% 84**
(.13) (.0031) (.21) (.27)
Avg account value bin FE v v v v
Year FE v v
Insurer FE v v
Insurer-year FE v v
R? 13 16 15 18
Observations 7,272 7,272 7,268 7,268

Panel regressions at the contract-year level Contract-level net flows is contract net flows normalized by contract
total account value. Lagged reserves is insurer beginning-of-year level of reserves normalized by insurer total
account value. Avg account value RANGE is a dummy variable equal to one if the contract average account
value (calculated as contract total account value divided by number of investors) lies in RANGE. All regressions
include these noninteracted dummy variables in addition to their interaction with lagged reserves. Columns 1
and 3 include insurer and year fixed effects. Columns 2 and 4 include insurer-year fixed effects. Columns 1 and
2 show OLS regressions. Columns 3 and 4 show IV regressions in which the insurer’s beginning-of-year reserve
ratio is instrumented using the insurer’s asset return in the previous year. All regressions are weighted by the
contract share in aggregate account value in the current year. Standard errors two-way clustered by insurer and
year are reported in parentheses. *p <.1; ¥*p < .05; ***p < .01.

level. We use the small-average-account-value category as the reference group.
The results are consistent with those obtained in the first specification: the
flow-reserves sensitivity is larger for contracts with large account values than
for contracts with smaller account values. The difference is significant at the
1% level. The IV estimates yield similar results (Columns 3 and 4).

These results are consistent with low financial sophistication explaining
the low elasticity of flows to reserves. Only investors with large investments
time reserves, because they are more likely sophisticated and have incentives
to understand the mechanics of intercohort redistribution through reserves.
Therefore, perhaps surprisingly, the lack of household financial sophistication
enables more risk sharing than would be possible if households were perfectly
informed and acted accordingly.

5.4 Do arbitrage opportunities exist?
Does the predictability of contract returns generate an arbitrage opportunity
that an investor who perfectly understands euro contracts could trade on? If
this was the case, a single arbitrageur would unravel the intercohort risk sharing
equilibrium. In this section, we show the role of the capital income tax is crucial
to prevent this from happening.

Proposition 3 implies contract returns can be replicated up to a constant by a
portfolio composed of the assets held by insurers and the risk-free asset. Because
euro contracts cannot be sold short, if an arbitrage strategy exists, it consists in
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long positions in euro contracts and short positions in the assets held by insurers
and the risk-free asset. In France, as in many other countries, households interest
expenses in levered financial investments are not tax deductible.*’ Therefore,
the return on the long leg of the arbitrage strategy is taxable, whereas the return
on the short leg is not tax deductible. We write the capital income tax rate
as T and the risk-free rate as rr. We show in Internet Appendix A.7 that one
euro invested long in contract j hedged with short positions in the replicating
portfolio generates a risk-free profit:

narbN [1_ (1_7:)(1 _¢)r:|(r—rf)

b= 1+r
+(1=1)1=P)rRj—1—tr—1—1)pr 21

when o ~0.

Equation (21) highlights the two sources of arbitrage profits and the two
arbitrage costs. First, contract returns are hedged against asset risk, yet they
earn the risk premium on the risky assets held by insurers. An arbitrageur
going long the contract and short the underlying assets earns the risk premium
without bearing the associated risk. This source of arbitrage profits is reflected
in the first term of 71"”’ r —ry > 0is the risk premium, and the term in brackets
is equal to one mlnus the exposure of the after-tax contract return to asset
risk. This term is close to one because contract returns are almost perfectly
hedged against asset risk. The second source of arbitrage profits comes from
the predictable distribution of reserves to contract holders. It is reflected in the
second term of rr;”tb , which is proportional to the reserve ratio. The costs of the
arbitrage strategy are the tax on the expected asset return (third term of n”’b )
and the insurer compensation (fourth term).

The key insight from (21) is that a capital income tax is sufficient to eliminate
arbitrage opportunities; that is, n“’b <0 if 7 is large enough. This result does
not rely on euro contracts beneﬁtmg from a tax advantage, because it assumes
the returns on all long positions are taxed at a uniform rate t. Neither does this
result rely on euro contracts being expensive, because it holds even when ¢ is
arbitrarily close to zero.

We calibrate the terms in (21) in Internet Appendix A.7 and show that
arbitrage opportunities are eliminated if the capital income tax rate is greater
than 26%. In reality, the applicable tax rate depends on the contract holding
period. At the end of the sample period, the lowest possible tax rate is 23%
(15.5% of social security contributions plus 7.5% of capital income tax). Hence,
the actual minimum tax rate is close to our estimate of the minimum tax rate
necessary to eliminate arbitrage opportunities.

In some countries, including France and the United States, interest paid on mortgages, student loans and business
loans often are tax deductible, but interest expenses in levered financial investments typically are not. Since euro
contracts can only be purchased by households, the relevant tax regime is that of households.
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Note the absence of arbitrage opportunities is not contradictory with our
finding in Section 5.3 that the flow-reserves relation is statistically significant
among investors with large invested amounts. Indeed, conditionally on saving
a positive amount, sophisticated households always should buy those contracts
with high reserves rather than those with low reserves, even in the presence
of a capital income tax. Yet, an arbitrage strategy that consists in buying
euro contracts and shorting the underlying assets and the risk-free asset is
not profitable in the presence of a large enough capital income tax.

6. Welfare Analysis

We now analyze the welfare implications of intercohort risk sharing. Consider
an investor with initial wealth W,, who invests for & years and derives utility
over her final wealth W,,; with constant relative-risk aversion (CRRA) y. To
measure the impact of intercohort risk sharing on welfare, we calculate the
change in the investor’s expected utility induced by adding euro contracts to
the investment opportunity set. To make this calculation, we compare expected
utility in two cases. In the first case, the investor has access to two assets: the
portfolio of assets held by insurer j with return x; ;; and the risk-free asset with
return 7 . CRRA preferences and i.i.d. returns imply that the optimal portfolio
allocation does not depend on wealth and is constant through time.

In the second case, the euro contract sold by insurer j withreturn y; ; is added
to the investment opportunity set in addition to the insurer asset portfolio and
the risk-free asset. Contract return smoothing implies that the contract return
is serially correlated, so the optimal portfolio allocation may not be constant
through time. However, in Section 4.3, we show that investor flow fails to
respond to investment opportunities and, in Section 5.3, we show this lack
of responsiveness is due to investors’ lack of sophistication. In this context,
assuming that investors do not rebalance their portfolio may be a more realistic
assumption than frictionless rebalancing. Accordingly, we assume that the
investor chooses the optimal portfolio allocation in the class of time-invariant
allocations.

In both cases, we allow the portfolio weight on the insurer asset portfolio to
exceed one. In practice, this does not necessarily require the investor to leverage
because the insurer asset portfolio includes the risk-free asset. Insurers hold
approximately 80% of corporate and sovereign bonds, 14% of equities, and
some real estate and loans. Regulatory filings do not report more granular
information on insurers’ asset allocation, unfortunately, so for the sake of
illustration, suppose that two-third is in risky assets and one-third is risk-free.
An individual investing her entire portfolio in risky assets would therefore have
a portfolio weight of 1/(2/3)=1.5 on the insurer asset portfolio and a weight
of negative 0.5 on the risk-free asset, even though the investor does not have
a short position in the risk-free asset. In the case in which the euro contract is
in the investment opportunity set, we impose that the weight on the contract
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cannot exceed one; for example, we do not allow the investor to leverage to
buy euro contracts. This assumption is justified by the fact that, in practice,
leveraging to buy euro contracts is made unprofitable by the capital income
tax, as shown in Section 5.4.

The contract return is given by Equation (18) as a function of the insurer
asset return and reserves. In this equation, we calibrate the elasticity of demand
using the empirical estimate in Table 3 and set « =0. The expression for p is
given in Internet Appendix A.8 and is equal to relative-risk aversion times the
share of the investor’s total wealth held in euro contracts. We calibrate this share
using that euro contracts represent one-third of aggregate household financial
wealth and that financial wealth represents 40% of total household wealth.
Therefore, p=y x0.33 x0.4. Regulation imposes ¢=0.15. We calibrate the
moments of the insurer asset return distribution to the data: mean r=4.4%
per year (see footnote 24) and standard deviation 4.4% per year (see Table 1),
and we assume it is lognormal and i.i.d. The risk-free rate is 3% per year
such that the risk premium on the insurer asset portfolio is 1.4% per year. We
assume that initial reserves are equal to their unconditional model mean, which
is normalized to zero. This implies that the unconditional expected contract
return is equal to the expected asset return on a before-fee basis, for example,
r=4.4%. To isolate the impact of intercohort risk sharing, we further assume
that fees on direct investment in the insurer asset portfolio are equal to fees
on euro contracts. This assumption implies that the expected contract return is
equal to the expected asset return on an after-fee basis, (1 —¢)r. Using these
parameters, we simulate the contract return based on the empirical moments
of the asset return distribution. The moments of the contract return distribution
are implied by the model and depend on the model parameters, in particular the
elasticity of demand «, which is estimated in the data in Section 4. We solve
for the optimal portfolio in the two cases described above (analytically when
the contract is not in the investment opportunity set, and numerically when it
is), and we calculate expected utility in each case.

Panel A of Table 11 contains the results for a level of relative-risk aversion
y =2 and investment horizon h =12 years. Before analyzing optimal portfolios,
we present summary statistics for a portfolio fully invested in the insurer asset
portfolio (first row) and a portfolio fully invested in the euro contract (second
row) to illustrate the impact of return smoothing. By assumption (see above),
both have the same net-of-fees expected return, equal to (1 —¢)r per year,
yielding a risk premium over the risk-free rate equal to 12.8% over 12 years.*!
Due to return smoothing, the standard deviation of the euro contract is about
four times lower than the standard deviation of the insurer asset portfolio. As a

The euro contract has a slightly higher 12-year risk premium than the insurer assets even though both have the
same annual expected return as a result of Jensen’s inequality when compounding returns and the fact that the
contract return has lower variance.
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Table 11
Welfare analysis
Portfolio weights h-year return (%)
Insurer Risk-free Euro Risk SD Sharpe Certainty
assets asset contract premium ratio equivalent
gain
€8} 2 3 (C)) (5) (6) )

A.y=2,a=0, h=12 years

Insurer assets 1 12.8 19.5 0.66

Contract 1 12.9 6.1 2.13 22

Optimal w/o contract 2.76 —1.76 379 62.9 0.6

Optimal w/ contract 2.62 —2.62 1 534 71.8 0.74 10.8
B. y=5,a=0, h=12 years

Insurer assets 1 12.8 19.5 0.66

Contract 1 12.9 6.1 2.13 5.2

Optimal w/o contract 1.11 —0.11 14.3 21.8 0.65

Optimal w/ contract 0.9 -0.9 1 259 25 1.04 9.7
C.y=2,a=5, h=12 years

Insurer assets 1 12.8 19.5 0.66

Contract 1 12.9 11.7 1.11 1.6

Optimal w/o contract 2.76 —1.76 379 62.9 0.6

Optimal w/ contract 224 —2.24 1 46.3 67.7 0.68 5.9

Each row is a portfolio. Columns 1 through 3 show the portfolio weights on the insurer’s asset portfolio with
return x ;, insurer’s contract with return y; ;, and risk-free asset with return r ¢. Columns 4 through 6 show
properties the portfolio return over the /=12 year holding period: risk premium over the risk-free asset, standard
deviation, and Sharpe ratio. Column 7 shows the certainty equivalent gain (again over the =12 year holding
period) of the portfolio relative to the portfolio on the previous row.

In each panel, the first row is a portfolio fully invested in the insurer’s asset portfolio. The second row is
a portfolio fully invested in the insurer’s contract. The third row is the optimal portfolio for a CRRA investor
with h=12 year investment horizon when the investment opportunity set is the insurer’s asset portfolio and the
risk-free asset. The fourth row is the optimal portfolio when the insurer’s contract is added to the investment
opportunity set.

Each panel considers a different set of parameter values for the investor’s relative-risk aversion is y,
elasticity of demand to the expected contract return condition on reserves «, and investor’s investment horizon .

result, the Sharpe ratio of the euro contract is approximately four times larger
than the insurer asset portfolio.*> The certainty equivalent gain from investing
in the euro contract relative to investing in the insurer asset portfolio is 2.2
percentage points over 12 years.*3

The third row shows the optimal portfolio when the investor can invest in the
insurer asset portfolio and the risk-free asset, but not in the contract. The fourth
row is the optimal portfolio when the investor can also invest in the euro contract.
The optimal weight on the euro contract is one, which means that the investor
is up against the constraint that she cannot use leverage to buy additional euro
contracts. Comparing the optimal portfolio with the euro contract to the case

The high Sharpe ratio of the euro contract follows mechanically from the fact that the contract earns the risk
premium associated to the insurer assets while bearing only a fraction of the risk, because risk is shared across
cohorts. This high Sharpe ratio cannot be leveraged to produce highly profitable trading strategies because of the
tax treatment of short positions for retail investors (see Section 5.4).

. . . t+h 1=y t+h 1=y
The certainty equivalent CE is calculated as (l_[‘[=t+1 (1 +r1_,)) /(1—y)= (CE+]_[r=t+1 (1 +’2,r)) /
(1—y) where r| ; is the contract return and ry ; is the insurer asset return.
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without the euro contract, we observe that the investment in the euro contract
substitutes for the investment in the risk-free asset (whose weight decreases
by 0.86) and barely changes the investment in insurer assets (whose weight
decreases by 0.14). The reason being that the contract is quite safe owing to
intercohort risk sharing. It is therefore a good (and superior) substitute to the
risk-free asset, which leads the investor to substitute the risk-free asset with
the euro contract. This finding is consistent with the analysis in Section 3.3,
where we show that contract returns are hedged against asset risk yet earn the
risk premium on the risky assets held by insurers. The weight on the insurer
assets decreases slightly because the euro contract is not completely safe and is
correlated with the insurer assets, especially at long horizon because asset risk
is absorbed by reserves and reserves are eventually distributed to contracts.

The certainty equivalent gain from adding the euro contract to the investment
opportunity set is 10.8 percentage points over the average 12-year holding
period. Itis substantially higher than the certainty equivalent gain from investing
fully in the contract relative to investing fully in the insurer assets reported
above. The reason being that the euro contract is optimally used as a substitute
to the risk-free asset, such that adding the euro contract to an optimal portfolio
yields higher welfare gains than the relative gain from investing in the euro
contract only versus the insurer assets only. In line with survey evidence
showing that euro contract investors value the safety of these products (Darmon
and Pagenelle 2005; Bianchi 2018), the key advantage of holding a euro contract
is to earn a long-run average return similar to that of a portfolio of long-term
bonds and stocks while facing low volatility.

Panel B considers a higher level of relative-risk aversion: y =5. The first two
rows show that the certainty equivalent gain from investing fully in the contract
relative to investing fully in the insurer assets increases. The reason is intuitive:
the reduction is risk yields a larger welfare gain when the investor is more risk
averse. However, these portfolios are not optimal portfolios. When we consider
optimal portfolios in the bottom two rows, the certainty equivalent gain from
adding the euro contract to the investment opportunity set hardly depends on
the level of risk aversion. The reason being that the investor optimally uses the
euro contract as a substitute to the risk-free asset, so the welfare gain stems
from the return spread between the contract and the risk-free asset and barely
varies with the investor’s risk aversion.

The estimated welfare gain from intercohort risk sharing can be interpreted
as the maximum difference in fees that investors are willing to pay to hold a
euro contract instead of the insurer’s assets. Future empirical work using data
on fees can use these estimates to tease out the split of the welfare gain from
euro contracts between insurers and investors.

In panel C, we perform a counterfactual analysis of the impact of demand
elasticity on intercohort risk sharing. We consider a higher elasticity of demand
to expected returns conditional on reserves and calibrate it to the elasticity of
deposits to the deposit spread estimated by Drechsler, Savov, and Schnabl

5433

€20z 3snbny Gz uo Jesn slied O3H 0S33 @dnol9 Aq ZzG/99//8€G/Z L/GE/AI01HE/SH/Woo dno dlwapede//:sdRy wody papeojumod



The Review of Financial Studies /v 35 n 12 2022

Table 12
Welfare analysis and investment horizon

Certainty equivalent gain (% per year)

SD contract return / Contract Optimal portfolio with contract

Investment SD insurer asset return relative to insurer assets relative to without contract
horizon (€8] 2) 3)

1 year 0.04 0.15 0.71

5 years 0.14 0.13 0.68

12 years 0.31 0.13 0.62

20 years 0.51 0.12 0.56

30 years 0.78 0.09 0.47

Geometric with

mean 12 years 0.12 0.57

Column 1 shows the ratio of the standard deviation of the h-year contract return divided by the standard
deviation of the h-year insurer asset return. Column 2 shows the certainty equivalent gain from investing in the
euro contract relative to investing in the insurer asset portfolio. Column 3 shows the certainty equivalent gain
from investing in the optimal portfolio when the investment opportunity set is the insurer asset portfolio, the
euro contract, and the risk-free asset, relative to investing in the optimal portfolio when the euro contract is
excluded from the investment opportunity set.

Each row corresponds to an investor with a different holding period /. h is deterministic, except in the last
row where  has a geometric distribution truncated at 30 years with mean 12 years.

(2017): a=5. Compared to the case of inelastic demand, a higher elasticity
reduces the ability of insurers to share asset risk across investor cohorts,
increasing the riskiness of contracts. The standard deviation of contract return
is roughly twice as large when o=5 than when a =0 (second row of panel C
vs. panel A). Because the contract becomes riskier and correlated with insurer
assets, it is less good of a substitute for the risk-free asset. The optimal portfolio
weight on insurer assets decreases, reducing the expected return of the optimal
portfolio (fourth row of panel C vs. panel A). As aresult, the certainty equivalent
gain from adding the contract to the investment opportunity set is approximately
halved compared to the case of inelastic demand.

We repeat the welfare analysis by varying the investment horizon in Table 12.
Column 1 shows the ratio of the standard deviation of the contract return to
that of the insurer asset return over the corresponding holding period. The
ratio is below one, reflecting return smoothing, but increases with horizon,
meaning that the impact of return smoothing decreases over time; for example,
the contract is relatively riskier at longer horizon. The reason being that return
smoothing generates positive autocorrelation in the contract return, so that
increasing the investment horizon increases the variance of the compounded
contract return by more than that of the underlying asset return. Therefore,
the annualized certainty equivalent gain from investing in the portfolio fully
invested in the euro contract relative to the portfolio fully invested in the insurer
assets decreases with the investment horizon (Column 2). The annualized
certainty equivalent gain from adding the euro contract to the investment
opportunity set of the optimal portfolio also decreases with horizon but remains
substantial even at a 30-year horizon: 47 bps per year (Column 3).

We consider an uncertain investment horizon in the bottom row of Table 12.
Each year, the investor is hit by a liquidity shock with probability A, in
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which case she liquidates her portfolio. Specifically, the holding period A
has a geometric distribution truncated at 30 years with a mean of 12 years.
The optimal portfolio is determined under rational expectations about the
distribution of /. The welfare gain brought about by the euro contract is similar
to that when the investment horizon is deterministic and equal to 12 years.
The reason being that the welfare benefits of intercohort risk sharing decrease
approximately linearly with the horizon. Therefore, uncertainty regarding the
investment horizon does not have a significant effect on these welfare benefits.

7. Conclusion

We provide the first evidence of a large scale, and private, implementation of
intercohort risk sharing. The evidence implies that financial intermediaries can
complete markets, by allowing different investor cohorts to share risk, which
they cannot achieve even in fully developed financial markets. Such intercohort
risk sharing is desirable from an ex ante welfare perspective, that is, under the
Rawlsian veil of ignorance (Gordon and Varian 1988; Ball and Mankiw 2007).

Private implementation of intercohort risk sharing requires a two-sided
commitment problem be overcome (Allen and Gale 1997). First, investors
must remain invested in contracts even when reserves are low. We show that
investment flows are inelastic to reserves, and do not tumble when reserves are
low. The demand elasticity is lower among investors who are expected to have
lower financial sophistication. Therefore, perhaps paradoxically, lower investor
sophistication enables a better sharing of risk—across investor cohorts—than
what would be possible if investors were perfectly informed.

Second, insurers must credibly commit not to run away with reserves, which
they might be tempted to do when reserves are high. Regulation solves this
side of the commitment problem, ensuring reserves are eventually returned
to investors. This suggests a reason intercohort risk-sharing savings products
exist in several European countries, where such regulation exists, but not in the
United States, where it does not.

These results have implications for real investment, which we leave for
future research. First, spreading aggregate risk across cohorts implies that
aggregate consumption is smoothed over time, which requires the capital stock
to increase in good time and to decrease in bad time. Hence, intercohort risk
sharing has implications for the cyclicality of aggregate investment. Second,
as Gollier (2008) theoretically shows, intermediaries can invest in more risky
assets when risk is shared across cohorts. Therefore, intercohort risk sharing
has implications for the composition of aggregate investment.
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